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Abstract

Ulva, commonly known as “sea lettuce,” is a resilient green macroalga and a promising
sustainable source of bioactive compounds. Thriving in nutrient-rich waters and amenable to
cultivation, Ulva is abundant in coastal ecosystems and well positioned to support marine
circular economies. This review critically evaluates its chemical composition, bioactivities,
extraction technologies, and industrial applications relevant to the food, pharmaceutical,
cosmetic, and agricultural sectors. Ulva biomass contains polysaccharides (notably ulvan),
proteins, essential amino acids, polyunsaturated fatty acids, polar lipids, vitamins, minerals,
carotenoids, and phenolic compounds. These constituents are associated with diverse health-
promoting properties, including antioxidant, anti-inflammatory, antimicrobial, neuroprotective,

and antihyperlipidemic activities. Advances in extraction are expanding the potential for
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scalable, efficient recovery of high-value compounds. Emerging methods include ultrasound-
assisted extraction, microwave-assisted extraction, enzyme-assisted extraction, pressurized
liquid extraction, and supercritical fluid extraction. Complementary developments in green
solvents, such as bio-based reagents, deep eutectic solvents, and ionic liquids, offer
environmentally friendly alternatives to conventional solvents. The range of potential
applications is broad, encompassing functional foods, dietary supplements, animal feed, bio-
based packaging, cosmetics, and pharmaceuticals. Integrating Ulva into sustainable value
chains directly supports the United Nations Sustainable Development Goals , particularly in
relation to health, resource efficiency, and environmental protection. Despite significant
progress, challenges remain in taxonomic resolution, biomass standardization, large-scale
biorefinery implementation, and regulatory harmonization. We conclude that Ulva holds strong
promise as a flagship marine bioresource, provided that advances in biotechnology, aquaculture
engineering, and green chemistry are coupled with enabling policies that facilitate its full

integration into the emerging blue bioeconomy.
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1. Introduction

Ulva Linnaeus (Chlorophyta, Ulvales, Ulvaceae), commonly known as sea lettuce, is a green
macroalga frequently associated with diverse microbial consortia. Seaweeds have long been
exploited for food, medicine, construction materials, and livestock feed, and continue to play
vital ecological and economic roles in coastal regions. Many Ulva species exhibit exceptionally
rapid growth, often forming extensive blooms, or “green tides,” in nutrient-rich coastal zones
influenced by agricultural runoff and urban wastewater (Smetacek and Zingone, 2013; Areco
et al.,, 2021). The high biomass productivity of Ulva, together with its rich repertoire of
bioactive compounds and adaptability to diverse cultivation systems, positions it as an ideal
candidate for sustainable bioprocessing (Fernand et al., 2017). As a potential source of valuable
metabolites, Ulva has gained increasing attention for applications in the food, feed,
pharmaceutical, and cosmetic industries (Fig. 1, Table 1). Within the framework of the circular
bioeconomy, integrated biorefinery strategies allow for the efficient valorization of Ulva
biomass through green extraction technologies, supporting zero-waste objectives and the

development of high-value bioproducts (Ozogul et al., 2025).

This review provides a concise overview of Ulva biology and synthesizes recent advances in
the extraction and application of its bioactive substances, with emphasis on sustainable and
cost-effective methodologies. Key nutritional components—including lipids, sterols,
oligosaccharides, polysaccharides, vitamins, minerals, carotenoids, and phenolic compounds—
are examined alongside emerging extraction technologies and environmentally friendly
solvents. Industrial applications in the food, pharmaceutical, cosmetic, and agricultural

domains, as well as relevant regulatory considerations, are also critically evaluated.

1.1. Ulva in aquaculture



Due to its high areal productivity and broad environmental tolerance, Ulva is suitable for both
wild harvesting and controlled cultivation. The genus comprises foliose and tubular species
found in marine, estuarine, and freshwater environments, many of which hold substantial
commercial relevance (Tran et al., 2022). Individual thalli range in size from a few millimeters
to several meters and display significant morphological diversity. However, this simplicity and
variability often complicate species identification, as many Ulva taxa share overlapping
morphologies. Ongoing taxonomic and nomenclatural revisions reflect this complexity

(Hughey et al., 2021), and species names cited in this review should be considered provisional.

Molecular tools, including sequencing of the plastid-encoded ribulose-1,5-bisphosphate
carboxylase/oxygenase large subunit (rbcL) gene, elongation factor Tu (tuf4), and the internal
transcribed spacer (ITS) region, have revealed previously unrecognized Ulva species in the
Mediterranean Sea (Bartolo et al., 2022; Wolf et al., 2012) and the Yellow Sea (Cai et al., 2021;
Liu et al., 2016). These studies underscore the limitations of morphology-based taxonomy and
highlight the importance of genetic identification for ensuring safety, reproducibility, and

consistency in commercial Ulva products (Simon et al., 2022; Steinhagen et al., 2019, 2022).

Note: Because of unresolved taxonomy and historical mislabeling, Ulva species names should

not be used for direct data pooling or quantitative comparison across studies.

Seaweed aquaculture is increasingly central to the sustainable Blue Economy, valued for its
low environmental footprint and reservoir of compounds applicable in food, feed, and cosmetics
(Jesus Alberto et al., 2016; Holdt and Kraan, 2011; Naylor et al., 2021). Large-scale Ulva
cultivation has been successfully integrated with abalone farming in South Africa (Bolton et
al., 2009) and Scandinavia (Steinhagen et al., 2022). Cultivation methods are diverse, ranging
from recirculating aquaculture systems (Shpigel et al., 2019) to integrated multitrophic
aquaculture (IMTA), where Ulva functions as a biofilter, to offshore seaweed farms (Fernand

et al., 2017; Steinhagen et al., 2021) and highly controlled systems with defined microbiomes
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(Wichard, 2023). The life cycle of Ulva is well characterized and manipulable, an essential
feature for industrial cultivation. Most species exhibit isomorphic alternation between
gametophytic and sporophytic stages, though parthenogenesis can also occur, producing clonal
gametophytes without fertilization (Hoxmark and Nordby, 1974). For aquaculture, vegetative
propagation is generally preferred to maintain yield, and sporulation is typically suppressed to
prevent biomass loss (Vesty et al., 2015). Predictive models of biomass accumulation and
sporulation events are under active development to optimize production in large-scale algal

aquaculture (Obolski et al., 2022).

1.2. Ulva and associated bacteria

Ulva forms intimate associations with specific bacterial communities that are essential for
normal morphogenesis and development (Singh and Reddy, 2014; Wichard et al., 2015; Saha
et al., 2024). In the absence of key bacteria, Ulva fails to differentiate properly and develops
into a callus-like morphology (Spoerner et al., 2012). Normal morphogenesis can be restored
by introducing certain bacteria or their released signaling compounds, such as thallusin
(Dhiman et al., 2022; Wichard, 2023). Recent studies show that bacterial families including
Flavobacteriaceae and Roseobacteriaceae promote the growth and development of U.
compressa, even under stress conditions (Ghaderiardakani et al., 2022). These microbial
partners may also enhance the nutritional and commercial value of Ulva by influencing

metabolite production (Polikovsky et al., 2020; Holbl et al., 2025).

1.3. Bioactive compounds in Ulva

Ulva is a natural reservoir of bioactive compounds, including polysaccharides, proteins,
peptides, amino acids, polyphenols, lipids, and pigments, many of which display biological and
therapeutic activities (Table 1). The abundance and composition of these constituents are

influenced by genetic background (Steinhagen et al., 2022), life cycle stage, and environmental



parameters such as temperature, salinity, irradiance, and nutrient availability (Simon et al.,
2022). Interest in Ulva as a functional ingredient for food, nutraceutical, and cosmeceutical
applications is driven by its documented health benefits. Epidemiological evidence indicates
that populations with high seaweed consumption exhibit lower rates of diet-related illnesses
and greater life expectancy (Pangestuti et al., 2021). However, because of ongoing taxonomic
uncertainty, reported concentrations of bioactives should not be directly compared across

studies, even when referring to the same nominal species (Tables 2—6).

1.4. Culinary and industrial applications

Historically, seaweed has been valued for its nutritional content and broad availability. Ulva
has become increasingly popular as a sea vegetable, consumed in salads, soups, and as an
alternative to nori in sushi (Hollants et al., 2013). It is also incorporated as a food additive in
processed products. As an alternative protein and mineral source to conventional crops, Ulva
holds considerable potential. Its nutritional composition should be assessed using standardized
protocols, such as those recommended by the Association of Official Agricultural Chemists
(AOAC) (Echave et al., 2021). Wild-harvested Ulva blooms are already processed into health
and animal nutrition products worldwide (Dominguez and Loret, 2019). Beyond nutrition,
recent studies have demonstrated antibacterial, antifungal, and anti-inflammatory properties,
positioning Ulva as a promising candidate for novel therapeutic and industrial applications

(Shobier and El Ashry, 2021).

1.5. Sustainable exploitation of aquatic resources

The global transformation of production systems requires meeting growing food demand while
reducing the prevalence of diet-related diseases and safeguarding resources for future
generations. The landmark EAT—Lancet Commission report, developed by an international

consortium of experts in health, agriculture, policy, and sustainability, sets scientific targets



aligned with the United Nations Sustainable Development Goals (SDGs) and the Paris
Agreement. According to the United Nations (2021), food production exerts the greatest
anthropogenic pressure on the planet: agriculture occupies ~40% of global land, contributes
~30% of greenhouse gas emissions, and consumes ~70% of freshwater resources. At the same
time, poor diets now pose a greater health risk than alcohol, tobacco, drug use, and unsafe sex
combined. More than 820 million people face undernourishment, 151 million children
experience stunting, and nearly 2 billion adults are overweight or obese. Furthermore, the global
prevalence of diabetes has nearly doubled in the past three decades. To address these
interconnected crises, the report highlights three strategies: reducing food loss and waste,

shifting dietary patterns, and adopting sustainable production systems (Willett et al., 2019).

Overexploitation of terrestrial land for agriculture underscores the need to explore the potential
of aquatic ecosystems and leverage their vast biodiversity. Seaweed aquaculture, which
accounts for nearly 50% of global mariculture output, offers multiple advantages. Beyond
serving as food and raw materials for various industries, seaweed cultivation provides key
ecosystem services, including carbon sequestration and water quality improvement (Duarte et
al., 2021). In addition, seaweeds represent promising feedstocks for biofuels, hydrogen,
biochar, and other bioproducts, aligning with circular economy principles (del Rio et al., 2020;

Steinbruch et al., 2020).

2. Ulva nutrients and other dietary compounds

Marine macroalgae such as Ulva spp., in close association with their microbiomes, produce a
diverse array of bioactive compounds with ecological, nutritional, and industrial significance.

The following subsections highlight major categories of these bioactive constituents.

2.1. Lipids



Lipids are a diverse class of hydrophobic organic molecules that include fatty acyls, sterols,
triacylglycerols, hormones, and complex membrane lipids. The principal lipid constituents in
Ulva are fatty acids (FAs), polar glycerolipids (e.g., phospholipids, glycolipids, and betaine
lipids), and sterols. These compounds serve as structural elements of cellular membranes,

energy reserves, and mediators of signaling pathways (Jouhet et al., 2024).

In Ulva species, total lipid content is generally modest, averaging ~2% of dry weight (dw)
(Kendel et al., 2015; Moreira et al., 2021), although higher levels (up to 15% dw) have been
reported in certain taxa (EI-Sheekh et al., 2021). Despite their relatively low abundance, Ulva
lipids contain nutritionally and pharmacologically valuable components. The FA profile
includes both saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs), the latter
encompassing monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs).
Common SFAs include myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), and
behenic acid (C22:0), with palmitic acid typically the most abundant, consistent with other
macroalgae (McCauley et al., 2016; Moreira et al., 2020). UFAs often constitute ~60% of total
FAs in Ulva. Reported MUFAs include myristoleic acid (C14:1), palmitoleic acid (C16:1), oleic
acid (C18:1 n-9), and vaccenic acid (C18:1 n-7). The PUFA fraction is dominated by C16 and
C18 chains, which together account for ~85% of total FAs, including hexadecatetraenoic acid
(C16:4 n-3), stearidonic acid (C18:4 n-3), linoleic acid (C18:2 n-6), and a-linolenic acid (C18:3
n-3). These compounds exhibit algicidal properties that may confer ecological advantages
(McCauley et al., 2016) and also represent nutritionally important essential FAs such as C18:2
n-6 and C18:3 n-3, as well as omega-3 (03) FAs. Longer-chain PUFAs, including arachidonic
acid (C20:4 n-6), eicosapentaenoic acid (EPA; C20:5 n-3), and docosapentaenoic acid (DPA;
C22:5 n-3), occur in smaller, species-dependent amounts (Alsufyani et al., 2014; Moreira,
2020). Several Ulva species—including U. lobata, U. lactuca, U. rigida, and U. armoricana—

are particularly enriched in C18 PUFAs (Ivanova et al., 2013; Kendel et al., 2015; Nelson et
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al., 2002; Ortiz et al., 2006), with U. lobata also containing notable levels of C16 and C22

PUFAs (Nelson et al., 2002).

Notably, Ulva spp. possesses higher levels of essential PUFAs compared to most terrestrial
plants (Ortiz et al., 2006). These include both omega-3 (®-3) and omega-6 (w-6) FAs,
distinguished by the position of the first double bond from the methyl end. The lipidome of U.
rigida includes ALA and DPA (Lopes et al., 2019). Reported FA profiles show high variability,
influenced by species-specific genetics, environmental conditions, and differences in extraction
and analytical methodologies (McCauley et al., 2016; Nelson et al., 2002; Zammit et al., 2023).
Marine-derived ®-3 PUFAs from Ulva exhibit significant health-promoting properties; for
example, higher ®-3 intake is associated with reduced heart failure risk (Sakamoto et al., 2019).
The favorable ®-6/w-3 ratio in Ulva is also considered beneficial for both human and animal

health (Ivanova et al., 2013).

Polar lipids, including phospholipids, glycolipids, and betaine lipids, constitute a substantial
proportion of the lipid fraction, typically ranging from ~20% to 60% of total lipids (Cardoso et
al., 2017; Kumari et al., 2014). Their abundance and composition vary with environmental
conditions, seasonal changes, geographic origin, and species (Cardoso et al., 2017; Kumari et
al., 2014; Moreira et al., 2020, 2021). Glycolipids, localized mainly in plastidial and thylakoid
membranes, are among the most prominent polar lipids. These include the neutral galactolipids
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDQG), as well as the

acidic sulfolipid sulphoquinovosyldiacylglycerol (SQDG) (Lopes et al., 2019, 2021).

Phospholipids such as phosphatidylglycerol are also prevalent in Ulva, functioning in
membrane architecture and photosynthetic complex assembly. Other classes include
phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and phosphatidic acid.

Phosphatidylcholine, a major phospholipid in many other seaweeds, is present only in low

10



amounts in Ulva (Kumari et al., 2014; Lopes et al., 2019, 2021). Betaine lipids, including
diacylglycerol 3-O-4'-(N,N,N-trimethyl) homoserine, have been detected in extraplastidial
membranes of Ulva. These zwitterionic, phosphorus-free lipids are structurally analogous to
phosphatidylcholine and may be upregulated under phosphorus-deficient conditions (van
Ginneken et al., 2017). Polar lipids act as key carriers of essential FAs such as LA (®0-6) and
ALA (®-3). Compared with triglycerols, phospholipids and glycolipids enhance the
bioaccessibility and bioavailability of ®-3 FAs (Lordan et al., 2017). However, the FA
composition of polar lipids is sensitive to environmental fluctuations. For example, warm
acclimation has been shown to decrease the n-3/n-6 and UFA/SFA ratios, as well as the overall

unsaturation index (Barkina et al., 2020; Monteiro et al. 2022; Gnayem et al. 2024).

Beyond their nutritional value, polar lipids from Ulva exhibit diverse bioactive properties.
Marine-derived phospholipids and glycolipids have been linked to the prevention of chronic
diseases such as cardiovascular disorders (Lordan et al., 2017). Lipid extracts from U. lactuca
improved serum and hepatic lipid profiles in rats fed a high-fat, high-cholesterol diet by
lowering total cholesterol and increasing high-density lipoprotein (HDL) levels (Kushnerova et
al., 2022). Specific glycolipids, such as DGDG (14:0 18:3) from U. armoricana, display
antiproliferative activity against non-small cell lung carcinoma (NSCLC-N6) cells (Kendel et
al., 2015). Other lipid extracts from Ulva species demonstrate antioxidant (Lopes et al., 2019),

antimicrobial (Moreira et al., 2021), and anti-inflammatory effects.

Given the combined nutritional and bioactive roles of ®-3, ®-6, and polar lipids in Ulva spp.,
these seaweeds hold considerable potential for applications in the food, feed, cosmetic,
pharmaceutical, and biotechnology sectors (Kumari et al., 2010; Moreira et al., 2021).
However, careful selection of species and strains is critical, as variations in PUFA content
influence both nutritional quality and sensory characteristics (Alsufyani et al., 2014; Moreira et

al., 2021). Odor development often arises from the breakdown of unsaturated FAs into smaller
11



aldehydes, alcohols, or ketones. The production of oxylipins varies significantly among Ulva
species and morphotypes and should therefore be considered in strain selection for food

applications (Alsufyani et al., 2014; Roleda and Heesch, 2021).

2.2. Steroids

Steroids are triterpenoid molecules composed of six isoprene units arranged into a core
cyclopentane-perhydrophenanthrene ring system. In Ulva, they function as membrane
constituents and hormonal precursors, contributing to reproduction, signaling, and stress
adaptation (Berneira et al., 2021; Fomenko et al., 2019). Steroid profiles vary among macroalgal
taxa and can serve as useful taxonomic markers. Green algae, including Ulva, typically contain
a broad spectrum of sterol derivatives. Reported compounds include 28-isofucosterol,
cholesterol, B-sitosterol, fucosterol, campesterol, brassicasterol, and several rare sterols (Al

Khazan et al., 2016; Geng et al., 2017; Shah et al., 2020; Eltamany et al., 2021).

Steroids from Ulva spp. exhibit a range of bioactivities, including antioxidant, antitumor,
antibacterial, antiviral, antifungal, and anti-ulcerative effects (Berneira et al., 2021; Vanbrabant
et al., 2021). For example, 24(R,S)-saringosterol acts as a liver X receptor agonist and crosses
the blood—-brain barrier, suggesting therapeutic potential for neurological disorders such as
Alzheimer’s disease. Cholest-4-en-3-one, a cholesterol derivative found in both plants and
animals, is an intermediate in steroid biosynthesis and autoxidation, with additional anti-obesity
effects mediated through intestinal cholesterol catabolism. Phytosterols such as campesterol,
brassicasterol, and isofucosterol lower serum cholesterol by reducing its intestinal absorption

(Kendel et al., 2015) (Table 2).

Other notable Ulva steroids include cholest-5-en-3-ol, which shows moderate antialgal activity
against red tide microalgae (Sun et al., 2016), and several complex derivatives (e.g., stigmasta-

5,22-dien-3B-ol acetate; pregn-5-en-20-one, 3-(acetyloxy)-17-hydroxy-(3p)-; allopregn-5,16-
12



diene-3p-0l-20-one acetate; 5,16,20-pregnatriene-3f3,20-diol diacetate), which demonstrate
antimicrobial, anti-inflammatory, anticancer, and antiasthmatic properties (Mickymaray and

Alturaiki, 2018).

Additional compounds such as (24R)- and (24S5)-5,28-stigmastadiene-3[3,24-diol-7-one and
vinylcholesta-3f3,50,6p,24-tetraol isomers inhibit human recombinant aldose reductase, an
enzyme implicated in diabetic complications. Steroids isolated from U. fasciata display
antibacterial activity against Gram-positive bacteria, likely due to structural similarity to
cholesterol, which allows disruption of membrane receptor function and cellular integrity

(Moghanjoughi et al., 2020).

Finally, several steroids have demonstrated antiviral activity. For example, stigmasterol inhibits
tobamoviruses (Eltamany et al., 2021). Taken together, the primary sterols in macroalgae—
including cholesterol, fucosterol, and isofucosterol—are promising candidates for nutraceutical

and pharmaceutical development (Serviere-Zaragoza et al., 2021).

2.3. Oligosaccharides and polysaccharides

Oligosaccharides and polysaccharides are complex carbohydrates composed of repeating
monosaccharide units linked by glycosidic bonds. Oligosaccharides typically contain 3—10
monomers, whereas polysaccharides comprise hundreds to thousands. In Ulva, polysaccharides
form the predominant fraction of the cell wall, consisting mainly of water-soluble ulvan and
insoluble cellulose, along with alkali-soluble fractions such as xyloglucan and glucuronan.
Collectively, these polysaccharides may account for 38—54% of dry algal weight (dw) (Kidgell
et al., 2019; Kim et al., 2011). Their abundance is influenced by geographic origin, seasonal
fluctuations, and environmental growth conditions (Dave et al., 2021; Jansen et al., 2022; Sfriso

etal., 2017). Moreover, Ulva species differ in their monosaccharide composition, relative ratios,
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and resulting structural sub-complexes (Dave et al., 2021; Kidgell et al., 2019; Ning et al.,

2022).

For example, rhamnose residues in Ulva occur in several configurations, including (1—)-Rha,
(1—4)-Rha, (1—-2,4)-Rha, [—2)-a-L-Rhap-(1—], and [—3)-a-L-Rhap-(1—]. Studies have
also reported arabinose and galactose as dominant sugars in the polysaccharide profile of U.
clathrata, while rhamnose predominates in U. prolifera and U. linza (Qi et al., 2005, 2012,
2013; Xu et al., 2015). In U. fasciata, polysaccharides contain up to 35% uronic acid, an

unusually high level compared with other seaweeds (Shao et al., 2014).

Ulvan, the most extensively studied Ulva polysaccharide, typically consists of rhamnose (42.2—
54.8 mol%), xylose (5.4-23.8 mol%), glucuronic acid (11.6-30.4 mol%), and iduronic acid
(6.0-7.0 mol%) (Cosenza et al., 2017; Lahaye and Robic, 2007). Two principal ulvan
backbones have been proposed, featuring repeating disaccharide units such as [—4)-a-D-Glcp-
(1—-4)-B-L-Rhap3S-(1—] and [—4)-a-L-Idop-(1—4)-a-L-Rhap3S-(1—]. Unique structural
features have also been identified, including sulfated arabinose in U. clathrata (Qi et al., 2012).
Several Ulva species—including U. lactuca, U. linza, U. compressa, U. prolifera, and U.
intestinalis—Dbiosynthesize sulfated glucuronorhamnans (Bikker et al., 2016; Lahaye and

Robic, 2007; Li et al., 2018b; Wang et al., 2013) (Table 3).

Ulva polysaccharides are generally indigestible by humans, making them a valuable source of
dietary fiber. The fiber profile of U. lactuca includes high levels of hemicellulose, cellulose,
and lignin, often surpassing those of many fruits and vegetables (Misurcova, 2011; Yaich et al.,
2011). Extraction conditions strongly influence the yield and bioavailability of ulvan and other
saccharides. For instance, extraction at low pH and high temperatures (80-90 °C) yields 20—
24% uronic acid and 20-29% sugars, while raising the extraction pH from 3 to 7 increases

insoluble fiber content (Guidara et al., 2019; Yaich et al., 2017).
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Ulvan has attracted attention for its diverse bioactivities, including antioxidant, anti-
inflammatory, antihyperlipidemic, anticoagulant, antiviral, immunomodulatory, and anticancer
effects. Polysaccharides and oligosaccharides from U. pertusa demonstrated lipid-lowering
activity by reducing LDL cholesterol and triglycerides while increasing HDL cholesterol
(Pengzhan et al., 2003). Low—molecular-weight ulvans exhibit superior cellular uptake and
antioxidant activity compared with higher—-molecular-weight forms (Qi et al., 2005; Abd El
Hafez et al., 2020). Additional reported benefits include cholinesterase inhibition and
neuroprotection (Olasehinde et al., 2019), as well as stimulation of antioxidant enzymes (Li et

al., 2018b).

Anticoagulant activity has been confirmed in several Ulva species, including U. lactuca, U.
neumatoidea, and U. conglobata (Guerra-Rivas et al, 2011; Mao et al., 20006).
Immunomodulatory effects have been observed both in vitro and in vivo (Berri et al., 2017; Liu

et al., 2019; Ponce et al., 2020).

Beyond healthcare, ulvan is under investigation in agriculture as a plant immune system elicitor
to reduce pesticide dependence (Amin, 2019) and as a biogenic agent for nanoparticle synthesis
(Amin, 2020). Its antibacterial, antifungal, and antiviral properties also suggest utility in
agriculture and aquaculture (Anjali et al., 2019; Boisvert et al., 2015; de Borba et al., 2021;
Deveau et al., 2016). In biomaterials science, ulvan is being explored for tissue engineering,
scaffolds, wound dressings, and anti-biofilm coatings (Chandika and Jung, 2015). It functions
as a hydrogel polymer and prebiotic and can be incorporated into edible films or emulsions for
food and cosmetic applications (Barros et al., 2013; Popa et al., 2015; Ramu Ganesan et al.,

2018; Morelli et al., 2016).

Continued research and development are essential to expand the industrial, biomedical, and

applications of Ulva-derived polysaccharides and oligosaccharides.
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2.4. Vitamins

Vitamins are essential organic micronutrients with diverse chemical structures and biological
functions. They are broadly classified as fat-soluble (A, D, E, and K) or water-soluble (C and

B group). Seaweeds, including Ulva, are valuable dietary sources of these compounds.

Ulva is particularly rich in vitamin A (up to 9,581 IU/kg in U. rigida), vitamin C (94 mg/kg,
dw), vitamin E (20 mg/kg), and several B vitamins, including B1 (4.7—4.9 mg/kg), B2 (0.9-2.0
mg/kg), and B12 (0.1 g/kg) (Rasyid, 2017; Taboada et al., 2010). Notably, the concentrations
of vitamins B1 and B2 in U. rigida exceed those in more commonly consumed seaweeds such
as wakame (Undaria pinnatifida) and kombu (Laminaria japonica). In a comparative
assessment of ten Chlorophyceae species, U. reticulata exhibited the highest vitamin C content
(2.44 pg/g dw), although U. rigida contained comparatively low levels of vitamins B3 and B6
(Taboada et al., 2010). More recent studies reported vitamin B12 levels ranging from 462 to
709 ng/g dw in U. intestinalis and U. fasciata, respectively, with concentrations up to 22-fold
higher than those found in the red alga Palmaria palmata (Trigo et al. 2025). According to
European Regulations No. 1169/2011 and 1924/2006, U. fenestrata qualifies for the nutritional

claim “High in Vitamin B12” (Trigo et al., 2025; Imchen et al., 2024) (Table 4).

Vitamins in Ulva contribute to diverse physiological functions. Vitamin C supports immune
function and enhances iron absorption, while B vitamins are essential for energy metabolism.
Despite their low daily requirements, these micronutrients are indispensable for growth,
reproduction, and overall health (Riaz et al., 2009). Because humans cannot synthesize
sufficient quantities of most vitamins, dietary intake is essential. It has been estimated that 43
g of Ulva can supply the recommended daily allowance of vitamin C, and just 1.4 g of U.

lactuca can fulfill the daily requirement for vitamin B12 (Garcia-Casal et al., 2007, Table 4).

16



Deficiencies in vitamins result in characteristic diseases such as pellagra (B3), beriberi (B1),
blindness (A), anemia (B12), rickets (D), and scurvy (C) (Dhakal and He, 2020). In response,
the food and pharmaceutical industries have developed multivitamin supplements and fortified
foods, though their long-term efficacy remains debated. Given growing consumer interest in
natural health-promoting compounds, Ulva offers a promising alternative for vitamin
supplementation (Calheiros et al., 2021). Ulva-based vitamin products may be particularly
beneficial for vegetarians, who are prone to vitamin B12 deficiency (Taboada et al., 2010).
Nevertheless, limited data exist on the bioaccessibility and bioavailability of Ulva-derived
vitamins. Preliminary evidence suggests a positive correlation between vitamin C and
carbohydrate content in Ulva, which could guide the development of nutrient-dense algal food

products (Taboada et al., 2010).

In summary, the vitamin profile of Ulva supports its role as a functional food ingredient, though

further studies are required to evaluate absorption and health impacts within the algal matrix.

2.5. Carotenoids

Carotenoids are isoprenoid compounds characterized by a system of conjugated double bonds
that confer their distinctive pigmentation and antioxidant properties. Structurally, they may be
cyclic or acyclic and are classified into two major groups: carotenes (hydrocarbon carotenoids)
and xanthophylls (oxygenated derivatives). Carotenoids can exist in various geometrical
(cis/trans or Z/E) and optical isomeric forms and may undergo enzymatic cleavage (Rodriguez-

Concepcion et al., 2018).
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In plants, carotenoids are predominantly associated with chloroplasts, with violaxanthin,
neoxanthin, lutein, and B-carotene being most common, along with minor quantities of others.
Owing to their evolutionary proximity to terrestrial plants, green algae such as Ulva exhibit a
comparable carotenoid profile (Eismann et al., 2020; Rodriguez-Concepcion et al., 2018). In
addition to these major pigments, Ulva spp. contains a-carotene, antheraxanthin, zeaxanthin,
and B-cryptoxanthin. Reported concentrations of total carotenoids in Ulva typically range from

0.05 to 0.20 mg/g fresh weight (fw) (Eismann et al., 2020) (Table 5).

Carotenoid accumulation in Ulva is strongly influenced by genotype and environmental
conditions, including light intensity, nutrient availability, temperature, and salinity. Their levels
are often positively correlated with algal biomass and can be modulated using external stimuli
such as selenium or phytohormone supplementation, short-term ultraviolet exclusion,
temperature shifts, CO: depletion, or transient hypersalinity stress. These responses are thought
to enhance photosynthetic efficiency and mitigate oxidative stress by scavenging reactive

oxygen species (Eismann et al., 2020).

Given the ecological significance of U. prolifera, particularly in large-scale “green tide” events,
there is growing interest in its carotenoid biosynthesis and environmental regulation (He et al.,
2022). Several carotenoids in Ulva, including B-carotene, a-carotene, and B-cryptoxanthin,
function as precursors to vitamin A, which is essential for vision, immunity, and development.
These provitamin A carotenoids are especially relevant for alleviating vitamin A deficiency, a
widespread global nutritional problem. Beyond their role as nutrient precursors, carotenoids
and their cleavage products have been associated with protective effects against certain cancers,
cardiovascular and metabolic disorders, ocular degeneration, bone and skin conditions,
cognitive decline, and complications in pregnancy and early development (Meléndez-Martinez,

2019).
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Despite recognized health benefits, carotenoid intake in many populations falls below the levels
recommended by the European Food Safety Authority (EFSA) (Meléndez-Martinez et al.,
2021). Caution is advised in individuals at high risk of lung cancer, as daily B-carotene
supplementation above 15 mg has been linked to increased cancer incidence in smokers and
asbestos-exposed individuals, although such effects have not been observed in healthy cohorts
(Blot et al., 1993; Heinonen, 1994; Hennekens et al., 1996; Omenn et al., 1996; Eggersdorfer

and Wyss, 2018; Meléndez-Martinez, 2019).

Carotenoids have wide-ranging industrial applications. In the food sector, they are used as
natural colorants, antioxidants, and functional ingredients. In cosmetics, they provide protective
and aesthetic benefits, while in pharmaceuticals, specific carotenoids such as B-carotene and
canthaxanthin have been investigated for skin disorders. Carotenoids are also widely used in
animal feed formulations to enhance pigmentation and health. Overall, they represent
multifunctional bioactive compounds with significant value for the agro-food, aquaculture,
pharmaceutical, and cosmetic industries (Meléndez-Martinez et al., 2019; Meléndez-Martinez

etal., 2021).

2.6. Phenolic compounds

Polyphenols are structurally diverse secondary metabolites characterized by multiple
hydroxylated phenyl rings. Functional groups such as hydroxyl, methoxy, and carboxyl
moieties contribute to their reactivity and biological activity, enabling chemical modifications
including oxidation, glycosylation, and methylation. Polyphenols are broadly classified into

flavonoids, phenolic acids, stilbenes, and lignans (Aneklaphakij et al., 2021; Ghani, 2020).

Although Ulva is not the richest source of polyphenols among seaweeds, it contains appreciable

amounts of flavonoids, phenolic acids, and tannins (Cotas et al., 2020). Reported total phenolic
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content varies widely—from 0.8 to 583 mg gallic acid equivalents (GAE)/g (dw), depending

on species and analytical methodology (Mezghani et al., 2015; Pappou et al., 2022) (Table 6).

Several flavonoids have been identified in Ulva, including apigenin (in U. lactuca and U.
rigida), quercetin, kaempferol, and luteolin. These compounds exhibit antioxidant, anti-
inflammatory, and cardiovascular-protective effects (Salehi et al., 2019; Dabeek and Marra,
2019; Wekre et al., 2019; Lin et al., 2008). Quercetin and kaempferol also demonstrate
antimicrobial activity, suggesting potential applications as natural food preservatives or
antimicrobial agents in clinical settings (Daglia 2012). Luteolin has been investigated for
anticancer and neuroprotective effects, with evidence of benefits for cognitive function.
Additionally, luteolin inhibits foodborne pathogens such as Salmonella and Escherichia coli,

highlighting its potential as a natural preservative (Xi et al., 2022; El-Bilawy et al., 2022).

Phenolic acids reported in Ulva include caffeic acid and chlorogenic acid, both associated with
antioxidant and anti-inflammatory properties. These compounds reduce the risk of chronic and
neurological diseases, such as Alzheimer’s disease and cancer (Zaatout et al., 2019; Alam et
al., 2022; Tajik et al., 2017). Tannins present in Ulva also contribute antiviral, antibacterial,
antioxidant, anti-inflammatory, and anticancer activities (Salehi et al., 2019). Despite this
growing evidence, data on the bioavailability, metabolism, and in vivo efficacy of Ulva-derived
polyphenols remain limited. More research is needed to validate their health benefits and to
develop practical strategies for their incorporation into functional foods, pharmaceuticals, and

nutraceuticals.

2.7. Minerals and Metals

In addition to vitamins, lipids, and proteins, the nutritional value of edible seaweeds such as
Ulva 1is significantly influenced by their mineral composition. Like terrestrial plants,

macroalgae require both macronutrients such as nitrogen, phosphorus, potassium, calcium,
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sulfur, and magnesium as well as trace elements like iron, boron, manganese, zinc, copper,
molybdenum, nickel to support growth and development (Ho, 1981). Owing to their strong
bioaccumulative capacity, seaweeds often contain mineral concentrations up to 100-fold greater
than those of land vegetables, with some species reaching ash contents as high as 40% of their

dry weight (Circuncisao et al., 2018; Vargas-Murga, 2025; Whelton, 2014).

Species, geographic origin, seasonality, and cultivation practices strongly influence mineral
content. In U. lactuca, however, factors such as salinity, pH, and temperature appear to exert

minimal effects on metal accumulation (Bonanno et al., 2020).

Ulva is also recognized for its ability to bioaccumulate heavy metals, making it a reliable
biomonitor of coastal metal pollution. Metal uptake is influenced by algal physiology, cell age,
and environmental conditions, including pH, temperature, and light intensity (Mourad and El-
Azim, 2019). Some seaweeds can accumulate toxic elements such as arsenic, cadmium, copper,
and mercury at concentrations 200—-500 times higher than those in terrestrial plants (Circuncisao
et al., 2018). This highlights the importance of monitoring, as excessive consumption of
contaminated seaweed may pose significant health risks. Accordingly, regulatory authorities
have established maximum permissible levels for heavy metals and iodine in edible macroalgae

(European Food Safety Authority, 2023; Gallego et al., 2018; Stévant et al., 2018).

Compared with terrestrial vegetables, seaweeds generally contain higher concentrations of
sodium and potassium. Importantly, their favorable Na/K ratios may contribute to
cardiovascular health (Whelton, 2014). High sodium levels, however, may be a concern in
regions with elevated dietary sodium intake. Ulva is also a good source of calcium, phosphorus,
and magnesium, minerals essential for bone health and cellular function. Nevertheless, the
presence of trace elements alone does not guarantee bioavailability; absorption depends on the
physical and chemical properties of the food matrix and interactions with other dietary

components (Dominguez-Gonzélez et al., 2010). Polysaccharides such as ulvan, abundant in
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Ulva cell walls, exhibit metal-binding properties that may influence mineral bioavailability (Chi

et al., 2021; Olasehinde et al., 2019).

Additionally, soluble fibers enriched in ulvan can be processed to extract valuable sea salts
within a cascading biorefinery framework. This approach not only yields food-grade salts but
also enhances the utility of residual biomass for downstream applications such as fertilizers,

animal feed, and biofuels (Magnusson et al., 2016).

2.8. Other secondary compounds

Marine green algae such as Ulva and their associated microbiomes produce a wide array of
secondary metabolites, including alkaloids, cyclic peptides, diterpenoids, glycerol derivatives,
phlorotannins, polyketides, quinones, and sterols (Blunt et al., 2008). Many of these bioactives
mediate cross-kingdom interactions and enhance adaptability to environmental stressors, while

also showing potential for pharmaceutical applications (Wichard and Beemelmanns, 2018).

Although Ulva is generally less chemically diverse than red or brown algae, it has yielded
several notable secondary metabolites. The alkaloid pyrrolopiperazine-2,5-dione [cyclo-(Pro-
Gly)], identified in U. prolifera, exhibits neuroprotective and anti-amnesic effects (Hayasaka
et al., 2016). Terpenoids such as loliolide, isololiolide, and (+)-epiloliolide have been isolated
from U. prolifera and U. lactuca, with (+)-epiloliolide demonstrating potential regulation of the
p53 signaling pathway (Chung et al., 2021; Sun et al., 2016). To date, however, most research
has been conducted on crude extracts, leaving many active constituents unidentified. The
1solation, structural elucidation, and mechanistic characterization of Ulva metabolites remain

promising avenues for medicinal chemistry (Shah et al., 2020).

2.9. Bioavailability of bioactives

The complex biochemical matrix of seaweeds, rich in fibers and polysaccharides, can limit the

release and absorption of embedded bioactives. Encapsulation technologies and advanced
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formulations may enhance bioavailability by protecting compounds from gastrointestinal
degradation and facilitating intestinal uptake. Some seaweed-derived compounds exert health
benefits indirectly through modulation of the gut microbiota. For example, non-digestible
polysaccharides such as alginate and fucoidan act as prebiotics, stimulating the production of
short-chain fatty acids, which have systemic metabolic and immunological benefits. Bioactive
interactions can also modulate absorption: lipids may enhance the uptake of fat-soluble
compounds such as carotenoids, whereas polyphenols can shield other molecules from
oxidative degradation. Optimizing processing methods, delivery systems, and synergistic
formulations is therefore critical to maximize the nutritional and therapeutic potential of Ulva-

derived bioactives.

3. Extraction methodologies

Extraction technologies and operating conditions critically influence the yield, purity, and
biological activity of natural compounds. In most cases, a solvent extraction step is required to
selectively separate target components from algal biomass. From a sustainability perspective,
factors such as human and animal toxicity, photochemical oxidant formation, primary energy
demands, and climate change impacts must be considered when selecting extraction methods
(Zapata-Boada et al., 2022). Traditional extraction approaches often rely on toxic solvents, high
energy inputs, and large solvent volumes, limiting their applicability in food- or
pharmaceutical-grade production. Recent advances have focused on scalable, efficient, and
environmentally friendly processes to overcome these drawbacks. The use of water as a solvent
is particularly promising, as it prevents the formation of toxic by-products and undesirable
residues in the final product (Diaz-Reinoso et al., 2017; Harrysson et al., 2018). However,

extraction from Ulva remains technically challenging due to the presence of rigid cell walls,
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capsules, and a complex extracellular polymeric substance matrix, all of which hinder solvent
penetration and compound release (Zammit and Agius, 2022). To enhance recovery,
combinations of extraction techniques are often employed to increase yields while preserving
the native structure of metabolites (Robin et al., 2018a). Sequential extraction strategies further
improve biomass utilization and reduce waste generation, transforming residual material into
feedstock for other applications (Mhatre et al., 2019). Thus, extraction efficiency is a key

determinant of the economic and industrial value of Ulva-derived compounds.

This section first outlines the principles of emerging extraction methodologies (Fig. 2). Green

solvents and sustainability considerations are then discussed in detail.

3.1. Ultrasound-assisted extraction (UAE)

UAE applies sound waves at frequencies above the audible range (>20 kHz) and below
microwave frequencies (<10 MHz). As ultrasound passes through the medium, alternating
compression and rarefaction cycles induce cavitation. The collapse of cavitation bubbles near
the cell surface generates localized mechanical energy that disrupts cell walls and membranes,

enhancing solvent penetration and release of intracellular metabolites (Mason et al., 1996).

UAE is considered one of the most cost-effective extraction methods compared with
alternatives such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), or
accelerated solvent extraction (Chemat et al., 2020; Tiwari, 2015). It enables efficient recovery
of target compounds while reducing the use of organic solvents, thereby qualifying as a clean
and environmentally friendly technology (Wang et al., 2019). Additional advantages include
versatility, operational simplicity, and flexibility (Barba et al., 2020; Tiwari, 2015). However,
several variables—such as frequency, power, duty cycle, extraction time, temperature, solvent
type, and liquid—solid ratio—must be carefully optimized for consistent yields (Kumar et al.,

2021).
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In comparative studies, UAE outperformed conventional methods in extracting phenolic
compounds and enhancing radical scavenging activity from Sargassum wightii, U. rigida, and
Gracilaria edulis. For instance, 30 min of UAE from U. rigida yielded higher phenolic recovery
than 120 min of conventional extraction (Kumar et al., 2020). Optimized UAE conditions
(100% amplitude, 1300 W, pH 5.7) yielded 0.253 g GAE/100 g dw of phenolics (Cameselle et
al., 2025). UAE has also been effective for polysaccharides: yields of ulvan ranged from ~9%
to 23% depending on experimental conditions (Thanh et al., 2023; Cameselle et al., 2025),
while sulfated polysaccharides reached 8.3% in U. intestinalis (Rahimi et al., 2016). Higher
yields have been reported for U. lactuca, including 17.6% (Tian et al., 2015) () and 30.1% using
UAE combined with enzymatic-assisted extraction (EAE; enzyme concentration 1.5%, 1.1 h,
60 °C, 90 min ultrasound) (Wang et al., 2025). UAE has also been applied to extract pigments
and secondary metabolites. Ultrasound-assisted solid—liquid extraction with ethanol recovered
high-purity chlorophylls and xanthophylls from U. rigida (Martins et al., 2021a). In U. lactuca,
UAE with 50% ethanol achieved higher quercetin and antioxidant yields than 100% ethanol
(Rashad et al., 2023). Compared with other techniques, including microwave-assisted
extraction (MAE), ultrasound—-microwave-assisted extraction (UMAE), hot aqueous extraction,
and high-pressure-assisted extraction, UAE yielded the highest phytochemical concentrations
in Fucus vesiculosus and Pelvetia canaliculata (Garcia-Vaquero et al., 2021). For oil extraction,
ultrasound methods also outperformed pre-treatments such as deep freezing, lyophilization, and

microwaving, which often induce partial hydrolysis and pre-esterification (Piccini et al., 2019).

Despite these promising results, most UAE studies remain limited to laboratory scale with
probe-based systems. For industrial-scale application, challenges such as acoustic energy
density optimization and reproducibility must be addressed. Continuous-flow UAE systems
represent a promising direction for scale-up due to improved energy distribution and operational

efficiency (Alexandre et al., 2018; McDonnell and Tiwari, 2017; Tiwari, 2015).
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3.2. Microwave-assisted extraction

MAE is a widely applied technique for recovering bioactive compounds from plants and
macroalgae (Wang and Weller, 2006). MAE employs electromagnetic waves in the 300 MHz—
300 GHz range, which cause dipolar molecules and electrolytes to oscillate under an alternating
field. This rapid oscillation generates internal heating, leading to cell rupture without significant
external heat loss. MAE can be performed in either open-vessel systems at atmospheric pressure
or in closed systems under elevated pressure. Open-vessel MAE is considered safer and better
suited for large sample volumes, particularly when targeting heat-resistant compounds. MAE
is recognized as an environmentally friendly technique, as it typically requires less solvent,
shorter extraction times, and lower energy consumption compared with conventional methods.
Equipment costs are relatively modest, and the process is scalable. However, high operating
temperatures can degrade thermolabile compounds such as chlorophylls and carotenoids, and
additional filtration or centrifugation steps are often necessary to remove solid residues (Gomez
et al., 2020). Several examples illustrate the efficiency of MAE in Ulva. Polysaccharides were
extracted from U. pertusa under optimized MAE conditions (43.6 min, 600 W, water-to-
material ratio 55.5, pH 6.6), achieving a yield 0f 42% (Le et al., 2019). In U. rigida, chlorophyll
recovery using MAE produced comparable yields to UAE and conventional methods but
required only one minute of processing (Martins et al., 2021b). Similarly, MAE yielded higher
concentrations of chlorophylls and carotenoids from U. flexuosa compared with Soxhlet

extraction and SFE (Fabrowska et al., 2018).

3.3. Chemical extraction (CE)

A biorefinery approach can fractionate algal biomass into multiple products, including ulvan,
proteins, lipids, pigments, animal feed, and biofuels (Bikker et al., 2016; Mhatre et al., 2018;

Prabhu et al., 2020). Conventional CE typically involves acid or alkali treatments and solvents
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such as hexane, chloroform, or methanol (Gajaria et al., 2017; Zapata-Boada et al., 2022). For
example, hydrochloric acid extraction of ulvan from U. ohnoi yielded purer extracts than
sodium oxalate (Glasson et al., 2017). Lipid extraction is often performed using the Bligh and
Dyer (1959) method with chloroform—methanol. Residual biomass can then undergo successive
hydrolysis steps to isolate ulvan, proteins, and cellulose using NaOH, HCI, or NaOCl treatments
(Gajaria et al., 2017). Although CE is effective and widely used, it raises significant
environmental and safety concerns, including solvent toxicity, hazardous waste generation, and
high energy demands. Furthermore, harsh chemical treatments can compromise the functional
quality of extracted metabolites (Malik and Mandal, 2022). As a result, there is growing interest
in chemical-free and green chemistry alternatives (Robin et al., 2018b; Prabhu et al., 2020).
Nevertheless, most algal biorefinery studies remain at laboratory scale, with limited translation

to industrial-scale operations (Zammit and Agius, 2022).

3.4. Enzyme-assisted extraction

is a sustainable alternative that employs enzymes to degrade algal cell walls and release
intracellular metabolites. The efficiency of EAE depends on process parameters such as
temperature, pH, extraction time, enzyme type and concentration, and substrate composition
(Gagaoua, 2018). EAE is particularly valued for its specificity, mild reaction conditions, and
compatibility with aqueous environments (Puri et al., 2012). However, the high cost of
commercial enzymes remains a barrier, underscoring the need for low-cost crude enzyme
preparations and tailor-made blends. EAE has industrial applications in the food, animal feed,
and paper sectors, and has been used to recover oils, phenolics, pigments, and peptides (Ozkan
etal., 2021). Applications to Ulva are relatively limited but promising. Endo-protease treatment
has been used to produce crude ulvans followed by polysaccharide precipitation and to generate
polysaccharide fractions with bioactivity on human dermal fibroblasts (Hardouin et al., 2016).

In U. armoricana, EAE significantly improved extraction yields of organic matter, sugars, and
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proteins. Despite these encouraging results, further scale-up are required before EAE can be

adopted for industrial Ulva biorefineries.

3.5. Pressurized liquid extraction

PLE employs elevated pressure and temperature to maintain solvents in liquid form, thereby
improving mass transfer and compound solubility (de la Fuente et al., 2021). Typical operating
conditions are up to 1,500 psi and temperatures ranging from 20 to 200 °C. PLE can also be
applied under mild conditions (<40 °C) to protect thermolabile compounds (Wang et al., 2023;
Zhouet al., 2021b). PLE is considered a green extraction method, particularly when using food-
grade solvents. However, preprocessing steps such as drying and homogenization increase
energy consumption (Perez-Vazquez et al., 2023; Zhou et al., 2021a). Applications to Ulva have
included the recovery of FAs (Otero et al., 2018), sugars (Greiserman et al., 2019), and glucose
(Steinbruch et al., 2020). PLE has also been used to extract antioxidants and polyphenols from
other algal taxa (Pangestuti et al., 2019; Bordoloi and Goosen, 2020). Although PLE has not
yet been scaled for Ulva, successful scale-ups in other matrices, including plant materials and
food residues (Ko et al., 2016; Cardenas-Toro et al., 2015), indicate its industrial feasibility.
Potential technical issues include high-pressure requirements and clogging of equipment

(Andrade et al., 2022).

3.6. Supercritical fluid extraction

SFE uses solvents above their critical temperature and pressure, where they exhibit properties
of both gases and liquids, including high diffusivity and adjustable solvating power.
Supercritical CO: is the most commonly used solvent due to its low toxicity, non-flammability,
cost-effectiveness, and recyclability. Its tunable solvating power allows selective extraction of
high-value compounds by adjusting temperature and pressure (Zhou et al., 2021). Importantly,

CO: leaves no solvent residues, yielding high-purity extracts. SFE can also be coupled with
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analytical techniques such as chromatography, infrared spectroscopy, and nuclear magnetic
resonance for in situ monitoring of compound quality. Despite these advantages, SFE has
limitations, including the need for co-solvents to improve extraction of polar compounds,

relatively long processing times, and high equipment costs.

SFE has been applied to extract oils, FAs, carotenoids, and polyphenols from Ulva. For
example, Fabrowska et al. (2016) optimized SFE conditions for Cladophora glomerata, U.
flexuosa, and Chara fragilis, reporting that C. fragilis produced the highest carotenoid and
polyphenol yields, whereas U. flexuosa extracts had the strongest antioxidant activity. Veeranan
et al. (2018) demonstrated that ultrasound-assisted SFE of U. fasciata enhanced combustion
properties and improved acid and saponification values. Similarly, Messyasz et al. (2018)
reported that SFE yielded more FAs, carotenoids, and chlorophylls from U. clathrata compared
with conventional methods. Terme et al. (2017) compared SFE (with 2% ethanol as co-solvent)
with the Bligh—Dyer method for lipid extraction from Solieria chordalis and Sargassum
muticum, finding that although Bligh—Dyer yielded more total lipids, SFE produced higher

proportions of neutral lipids.

While large-scale SFE of Ulva has not been demonstrated, successful scale-ups in other
biomaterials—including Phyllanthus niruri, clove, sugarcane residues, and Arthrospira
(Spirulina)—highlight its industrial potential (Hassim et al., 2021; Prado et al., 2011; Crampon

etal., 2017).

3.7. Pulsed electric fields (PEF)

PEF extraction applies short bursts of high-intensity electric fields (0.1-40 kV/cm, <300 Hz) to
permeabilize cell membranes via electroporation. This non-thermal technique minimizes
solvent use and enables selective extraction with reduced risk of thermal degradation (Puértolas

et al., 2016). Limitations include high capital investment and the need for low sample
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conductivity, which often necessitates pre-washing of algal biomass (Capodaglio, 2021; Zhang

etal., 2023).

PEF shows particular promise for Ulva bioprocessing by enhancing extraction yields and
reducing processing time through facilitated release of intracellular water and solutes. Studies
have demonstrated its effectiveness for extracting proteins, starch, and minerals (Polikovsky et
al., 2016, 2019; Robin et al., 2018; Postma et al., 2018; Steinbruch, 2024). Prabhu et al. (2019)
reported efficient starch fractionation from U. ohnoi using a multistage PEF—mechanical
pressing process. Similarly, Einarsdottir et al. (2021) showed that PEF enhanced carbohydrate
and polyphenol recovery from L. digitata without the need for heat or solvents. More recently,
Efraim et al. (2022) combined PEF with enzymatic cell wall degradation to maximize water-

soluble protein extraction from Ulva, underscoring the scalability of hybrid approaches.

3.8. Other innovative methods: hydrothermal treatments (HT) and diluted acid hydrolysis

(DAH)

HT uses compressed liquid hot water for biomass fractionation. Autohydrolysis, a form of HT,
employs water as both solvent and reagent, offering advantages such as chemical-free
operation, low waste generation, and reduced energy demand (Carvalheiro et al., 2016; Gullén
et al., 2012). For example, Bikker et al. (2016) combined HT with enzymatic hydrolysis and
centrifugation to obtain sugar-rich hydrolysates and protein-enriched fractions from Ulva.
Andrade et al. (2022) reported increased oligosaccharide yields and selective removal of

rhamnan, mannan, and xylan at temperatures >150 °C.

DAH employs mineral acids (e.g., HCl, H.SO4) at 100-240 °C to depolymerize
polysaccharides. DAH offers high selectivity and yields under relatively mild conditions but

risks sugar degradation and equipment corrosion (Andrade et al., 2022). In Ulva, optimal sugar
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release occurred at 160 °C, while glucan solubilization peaked at 55.7% at 190 °C. Protein

solubilization was lower (26.7%), but residual solids remained protein-rich and digestible.

Both HT and DAH are established in lignocellulosic biomass processing but remain

underexplored and unscaled for algal biomass applications.

3.9. Sustainability aspects and future research

Innovative extraction methodologies contribute to several United Nations SDGs, including
sustainable industry and innovation (SDG 9), climate action (SDG 13), and protection of marine
and terrestrial ecosystems (SDGs 14, 15). They also support health and nutrition (SDG 3) and
energy efficiency (SDG 7). Despite progress, significant gaps remain in standardization and
industrial translation. A unified database supported by optimization tools such as response
surface methodology and artificial neural networks could streamline process development and
comparison. Future research should prioritize (i) hybrid extraction approaches (e.g., UAE+SFE,
PEF+PLE), (i1) incorporation of green solvents such as natural deep eutectic solvents
(NADES), and (ii1) system-level life cycle assessments. These advances will be essential for

scaling Ulva biorefineries in line with principles of the circular bioeconomy.

4. Extraction solvents: classical vs. emerging sustainable solvents

Extraction solvents used in the food, feed, pharmaceutical, and cosmetic industries are strictly
regulated to safeguard human health. In the European Union, Directive 2009/32/EC governs
the use of extraction solvents in the manufacture of foodstuffs and ingredients, applying equally
to EU-produced and imported products. Permitted solvents include propane, butane, ethyl
acetate, ethanol, carbon dioxide, acetone, and nitrous oxide, provided they are used in
accordance with good manufacturing practices. Their use is acceptable only when technically

unavoidable residues remain at levels that do not pose a health risk. Common solvents such as
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water, ethanol, and ethyl acetate are frequently employed for the extraction of carotenoids and
phenolic compounds used in food colorants, dietary supplements, animal feed additives, and
cosmetic formulations (Pappou et al., 2022). Additional authorized solvents include hexane,
methyl acetate, ethylmethylketone, dichloromethane, diethyl ether, dimethyl ether, methanol,
I-propanol, 2-propanol, cyclohexane, butanols (1-butanol, 2-butanol), and 1,1,1,2-

tetrafluoromethane, each subject to specific usage conditions and maximum residue limits.

Traditionally, organic solvents have been employed to maximize extraction efficiency.
However, many pose health and environmental hazards, undermining sustainability goals
(Chemat et al., 2020). Consequently, interest in greener and renewable alternatives has
intensified. Beyond water—universally regarded as the safest solvent—emerging classes of
“green solvents” include bio-based solvents, deep eutectic solvents (DES), and ionic liquids
(ILs), which combine high extraction efficiency with reduced environmental impact (Janicka

et al., 2022).

Bio-based are derived from renewable biomass through chemical or biochemical
transformation and are typically biodegradable, low in toxicity, and renewable (Li et al., 2016).
Examples include glycerol, 2-methyltetrahydrofuran (2-MeTHF), and ethyl lactate. Glycerol, a
by-product of biodiesel production, has high polarity and solubilizing capacity for both organic
and inorganic compounds. Mixtures of glycerol and hot water have successfully extracted
polyphenols and antioxidants from plants, with the advantage that glycerol-extracted
compounds can be used directly as food additives, eliminating the need for solvent removal and
reducing processing time and cost (Apostolakis et al., 2014; El Kantar et al., 2019; Jablonowska
etal., 2021). 2-MeTHF, derived from lignocellulosic biomass, has been evaluated as a substitute
for halogenated solvents in plant phenolic extraction (Canadas et al., 2022), although
applications in macroalgae remain limited. Ethyl lactate, with its high biodegradability and low

toxicity, has been used effectively for selective fucoxanthin extraction from Sargassum
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fusiforme (Dandia et al., 2013; Nie et al., 2021). Other bio-based solvents include limonene and
2,3-butanediol. Despite their potential, bio-based solvents are still less widely applied to
macroalgae compared with DES and ILs, which are currently receiving greater attention for

Ulva and other seaweed extractions (Chemat et al., 2020; Lee et al., 2021).

4.1. Ionic liquids (ILs)

ILs are salts composed of bulky organic cations and organic or inorganic anions that remain
liquid at or near room temperature. Common cations include cholinium, ethylpyridinium, and
1-butyl-1-methylpiperidinium, while typical anions include halides, fluorides, and nitrates (Lim
et al., 2022; Raj et al., 2023). ILs are highly tunable, with physicochemical properties such as
polarity, conductivity, and solubility tailored through specific ion combinations. Their ability
to disrupt cell walls and membranes facilitates the release of intracellular metabolites (Sintra et
al.,2018; Sneha et al., 2023). Aqueous IL solutions further improve biocompatibility and reduce

viscosity, enhancing extraction performance.

ILs have been extensively studied for microalgal extraction, with increasing application to
macroalgae. For instance, [C2Ciim][(C4)2PO4] enabled 80.6% protein recovery from U. lactuca
under alkaline conditions (Miranda, 2017). Similarly, Pezoa-Conte et al. (2015) reported that
1,1,3,3-tetramethylguanidine propionate ([TMGH'][CO:Et]) dissolved up to 67% of
carbohydrates from U. rigida. Martins et al. (2021a) demonstrated efficient chlorophyll
extraction using 250 mM tributyltetradecylphosphonium chloride ([Pa4,4,4,14]Cl), which was both
cost-effective and scalable. In addition, ILs have shown promise for lipid and carotenoid

recovery from algal biomass (Vieira et al., 2018; Sneha et al., 2023).

4.2. Deep eutectic solvents
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DES are formed by combining hydrogen bond donors and acceptors—typically a quaternary
ammonium salt with a metal salt or an organic acid—resulting in a eutectic mixture with a
melting point lower than that of its components. First introduced as alternatives to ILs in 2003,
DES are valued for their ease of preparation, low cost, biodegradability, and reduced toxicity
(Abbott et al., 2002; Kaoui et al., 2023; Raj et al., 2023). In algal bioprocessing, DES effectively
disrupt biomass structure, enhancing solubility and mass transfer, and thereby improving

recovery of proteins, lipids, phenolics, and other bioactives.

Xu et al. (2020) employed a DES-based aqueous two-phase system (choline chloride—urea)
with ammonium sulfate precipitation to purify phycoerythrin from Porphyra yezoensis,
achieving 69.9% recovery and a purity index of 3.825 (Ases/Azs0). Saravana et al. (2018)
combined DES with subcritical water extraction to obtain alginate and fucoidan from brown
algae, achieving extraction rates of 28.1% and 14.9%, respectively, under optimized conditions

(150 °C, 19.9 bar, 36.8 mL/g liquid—solid ratio).

Although applications of DES to Ulva remain limited, the diversity of potential hydrogen bond
donors and acceptors suggests significant scope for tailoring DES systems to extract high-value

metabolites in a sustainable manner.

5. Applications

Each class of bioactive compounds in Ulva spp. contributes to the macroalga’s industrial
relevance, with applications spanning pharmaceuticals, nutraceuticals, cosmetics, and

aquaculture (Graphical abstract).

Health-promoting product categories:
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e Dietary supplements: Concentrated sources of nutrients or bioactive compounds
delivered in small-dose formats (e.g., capsules, drops), designed to support nutritional

or physiological health (European Parliament, 2002).

e Functional foods: Conventional foods that provide additional health benefits beyond

basic nutrition when consumed regularly (Binns and Howlett, 2009).

e Nutraceuticals: Foods or food components that deliver medical or health benefits,

including disease prevention or treatment (DeFelice, 1995).

e Nutricosmetics: Ingestible products aimed at improving cosmetic appearance and skin

health (Meléndez-Martinez, 2019).

5.1. Foods, feeds, safety, and regulation

Ulva spp. have long been consumed in Asian diets and are gaining popularity in Western
markets. They can be eaten fresh, dried, or cooked, and are increasingly incorporated into dairy
products and plant-based meat alternatives (Fleurence et al., 1999; del Olmo et al., 2019;
Yesuraj et al., 2022). Ulvan’s gelling properties also make it a valuable functional ingredient in

vegan foods (Cindana Mo’o et al., 2020).

Nutritionally, Ulva spp. are rich in high-quality proteins, essential amino acids, vitamins,
polyunsaturated FAs, and antioxidants. Their inclusion in animal feed has been shown to
enhance growth performance and nutrient assimilation in livestock such as carp, shrimp, and
chickens (Abudabos et al., 2012; Diler et al., 2007; Pallaoro et al., 2016). Furthermore, Ulva-
based supplements improve the bioavailability of trace minerals in pigs compared to inorganic

additives (Michalak et al., 2015). Safety remains a critical consideration. Potential risks include
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contamination with pathogenic microorganisms such as Sa/monella, heavy metals (e.g., lead),
and other pollutants. Rigorous safety assessments and adherence to regulatory framework are
therefore essential to ensure for safe consumption of Ulva-derived food and feed products (Li

et al., 2018a; Hofmann et al., 2024).

5.2. Pharmaceutical applications

Polysaccharides such as ulvan have attracted attention in pharmaceutical research due to their
bioactivity and biocompatibility, with applications in wound healing and drug delivery.
Components of Ulva spp. exhibit anti-inflammatory, antioxidant, immunostimulatory,
antitumor, and antiviral properties (Barzkar et al., 2019; Salehi et al., 2019a; Sulastri et al.,
2021). Extracts from U. australis and U. lactuca have demonstrated antidiabetic and
antimicrobial activities, respectively (Trentin et al., 2020; Anjali et al., 2019). These findings

underscore the potential of Ulva as a source of novel therapeutic agents.

5.3. Cosmetic applications

Ulva spp. contain multiple compounds of cosmetic interest, including unsaturated FAs,
vitamins, phenolic compounds, and carotenoids, the latter being particularly relevant for skin
health and protection against photoaging (Kalasariya et al., 2021; Lourenco-Lopes et al., 2020;
Meléndez-Martinez et al., 2019; Salehi et al., 2019a). Among these, ulvan has gained
prominence due to its ability to retain moisture and modulate extracellular matrix metabolism
in fibroblasts, which may mitigate signs of skin aging (Fournicre et al., 2019). Both native and
chemically modified ulvans (e.g., conjugated with FA moieties) have been employed as
stabilizing and emulsifying agents in colloidal systems for food and cosmetic applications. Such
multifunctional formulations are proposed for use as clouding and flavoring agents in

beverages, and as stabilizing or perfuming agents in creams and lotions (Morelli et al., 2019).
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Commercial interest is reflected in the development of patented formulations such as
Chlorofiltrat® Ulva HG, derived from U. lactuca, which is marketed for its moisturizing and

anti-inflammatory benefits (Pimentel et al., 2018).

6. Future considerations in biotechnological and bioprocessing advancements

The biotechnological potential of Ulva is increasingly recognized, with advances in sustainable
cultivation, biorefinery processes, multi-product development, and renewable biomass

utilization supporting its integration into the circular bioeconomy (Fig. 3).

Contemporary “omics” methodologies, including genomics, transcriptomics, metabolomics,
and synthetic biology, are providing deeper insights into Ulva metabolism and its interactions
with associated microbiota (Blomme et al., 2023). These tools are essential for strain
improvement, yield optimization of target metabolites, and tailoring of cultivation conditions

to enrich specific bioactive profiles.

An important development in this context is the design of defined microbial consortia that
enhance Ulva growth and morphogenesis. Such bacterial partners not only boost biomass
productivity but also increase concentrations of valuable bioactive compounds (Wichard,
2023). In parallel, controlled stress strategies such as modulating light, salinity, or nutrient
regimes are being used to stimulate metabolite accumulation, including polyphenols,

carotenoids, ulvan, and FAs.

Innovations in aquaculture engineering, such as photobioreactors and IMTA, are enabling
precise environmental control, nutrient recycling, and waste minimization, thereby supporting
sustainable large-scale cultivation of Ulva (Shpigel and Buck, 2023). Emerging applications of

synthetic biology and genome editing, although still nascent in green macroalgae, offer
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significant potential for targeted metabolic engineering and pathway optimization (Blomme et

al., 2023).

Despite this promising foundation, major challenges remain in scaling production and
processing. Most extraction technologies and biorefinery concepts have been validated only at
laboratory or pilot scales. Industrial translation requires addressing technological, logistical,
and economic bottlenecks, including securing a reliable year-round biomass supply, improving
extraction efficiency, reducing energy and solvent use, and developing cost-effective cascade
biorefineries that maximize value recovery from each biomass component. Technologies such
as PEF, UAE, and enzyme-assisted extraction show considerable promise but require further

validation for commercial feasibility.

Equally critical is the standardization of extraction methodologies to ensure reproducibility and
comparability across studies (Vargas-Murga; Holdt and Kraan, 2011). Reported concentrations
of bioactives in Ulva vary widely, even within the same species name, due to differences in
taxonomy, developmental stage, environmental factors, seasonality, and microbial interactions.
For example, cholesterol content has been reported between 2.0 and 12 mg/kg dw (Table 2),
while gallic acid levels range from 0.01 to 10 mg/kg dw (Table 6). These discrepancies
highlight the urgent need for publicly available Ulva reference materials to support quality
control and inter-laboratory calibration, thereby strengthening confidence in bioactive

quantification and facilitating regulatory approval.

7. Market development and regulatory outlook

Market development is a critical component of commercialization. As Ulva-based products gain
traction in Asia and expand into Europe and North America, consumer awareness, transparent

product labeling, and confidence in product safety and efficacy must be prioritized (Hofmann
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et al., 2024). Functional components of Ulva—including ulvan, proteins, and pigments—are
increasingly incorporated into dietary supplements, vegan and clean-label foods, natural
cosmetics, and medical formulations. This expanding market requires robust quality assurance,

transparent sourcing, and comprehensive safety data to maintain credibility.

From a regulatory perspective, the integration of Ulva-derived products into mainstream
markets depends on standardized rules and compliance protocols. Within the European Union,
extraction solvents, contaminants, and novel food applications must conform to strict safety
standards. Directive 2009/32/EC regulates solvent use in food production, while additional
frameworks govern permissible pollutant levels, allergen control, and health claims. Genetic
barcoding (e.g., rbcL, tufA, and ITS regions) is increasingly essential for species authentication,
ensuring traceability and regulatory compliance in food and nutraceutical sectors (Roleda and

Heesch, 2021).

International food safety authorities are also establishing maximum allowable concentrations
for heavy metals (e.g., arsenic, cadmium, lead), iodine, and other potentially hazardous
substances in edible seaweeds (Vargas-Murga et al., 2025). Continuous monitoring and
certification, potentially supported by eco-labels or third-party sustainability standards, will be

essential for regulatory approval and consumer trust.

The industrial utilization of Ulva aligns with several United Nations SDGs, including SDG 2
(Zero Hunger), SDG 3 (Good Health and Well-Being), SDG 7 (Affordable and Clean Energy),
SDG 9 (Industry, Innovation, and Infrastructure), SDG 12 (Responsible Consumption and
Production), and SDG 14 (Life Below Water). Seaweed-based biorefineries represent
sustainable alternatives to terrestrial biomass, offering reduced freshwater and land
requirements, higher productivity per unit area, and ecosystem services such as carbon

sequestration and nutrient bioextraction.
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To transition Ulva from promising research subject to a cornerstone of the blue bioeconomy,
legislative incentives, public—private partnerships, and industry—academia collaborations are
required. Investment in pilot-scale demonstration facilities, standardized life cycle assessments,
and techno-economic feasibility studies will accelerate industrial adoption (Nillson, 2022). The
creation of a unified knowledge repository, or “white book”, documenting optimal extraction

conditions could further streamline development and expedite commercialization.

8. Conclusion

In order to make Ulva use both economically feasible and environmentally conscious, it will be
crucial to incorporate sustainable solvents, cutting-edge extraction technologies, and precision
aquaculture techniques. Ulva's potential as a flagship species for sustainable marine
biotechnology has been strengthened by recent research that has discovered new functional
compounds within the species. Ulva's potential as a vital resource in the developing blue
bioeconomy is highlighted by its wide range of uses in the food, pharmaceutical, cosmetic,

agricultural, and energy sectors.
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Fig. 1. Main nutrients and dietary compounds in the green macroalga Ulva (Chlorophyta)
and its associated bacteria. Ulva produces diverse classes of compounds, including phenolics,
steroids, fatty acids, and the unique sulfated polysaccharide ulvan. In addition to bioactives of
for industrial interest, chemical exchanges occur between Ulva and its bacterial partners.
Disentangling the specific contributions of these interactions to bioactive production remains

an important future challenge.
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Figure 2
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Fig. 2. Extraction methodologies. Schematic representation of supercritical fluid extraction
(SFE) pulsed electric fields (PEF), and pressurized liquid extraction (PLE) processes for the

recovery of high-value compounds from Ulva biomass.

44



Figure 3
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Fig. 3. Bioactives and Ulva in a circular economic framework. Images of aquaculture are
courtesy of Muki Shpigel. Figure was created in BioRender. Wichard, T. (2025)
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Tables

Table 1. Major bioactive compounds in Ulva and their associated health benefits

Compound Group Examples Bioactives

Polysaccharides Ulvan Antioxidant, antiviral,
anticoagulant

Phenolics Flavonoids, phenolic acids Antioxidant, anti-
inflammatory

Proteins/peptides ACE-inhibitory peptides Antihypertensive,
antimicrobial

Fatty acids aLEA Anti-inflammatory,
cardioprotective

Pigments carotenoids Antioxidant, anticancer

Vitamins vitamins A, C, E General health, metabolism
support

Sterols stigmasterol anticancer

Minerals Ca, Fe General health
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Table 2. Selected steroidal compounds extracted from Ulva species (n.d. = not determined or mentioned in the study).

Taxon Origin Treatments = Extraction procedure Steroids References
' ' &
- L= S — 1 S S — 8 — 2
= ggxe €8 28 Z = E £ g2
= =9 5 29 = A < - L
=) 2= L3 (GRS a @ O = M=
Ulva lactuca SeaConomy Dried Extracted twice with mg/g 0.21 - n.d. 0.002 - n.d. n.d. n.d. Vanbrabant
Belgium, (70°C). cyclohexane after dw 0.38 0,004 etal. 2021
Netherland grounded saponification; solvent
evaporated at 65 °C under
N2
Ulva lactuca ALGAplus Washed Lyophilized sample Soxhlet- | mg/kg n.d. n.d. 12.4 3.1 n.d. n.d. Santos et al.
Ltd, Ria de with extracted with dw 2015
Aveiro, seawater, dichloromethane (9 h),
Portugal dried (20°C) | solvent evaporated to
dryness
Ulva Plestin-les- = Rinsed Extracted with %dw+ | 14+ 25.0+ 352+ | nd. 1.3+£0.1  3.0£0.2 Kendel et
armoricana | Gréves, with chloroform/methanol SD 0.1 0.2 0.3 al. 2015
Brittany, distilled (1:1, v/v) for 2 days at RT
France water, with 5 h agitation
grounded
Ulva Coast of Washed Extracted with methanol = mg/kg | n.d. n.d. 9.0 n.d. n.d. n.d. Sun et al.
prolifera Lianyungan | with water | (25 °C, 48 h, dark); dw 2016
g, China and dried residue (pH 11) re-
(60°C, 48 extracted with ethyl
h), milled | acetate; ethyl acetate
and, sieved | phase concentrated under
reduced pressure
Ulva Coastal Lyophilize | Extracted with % of 90.8 n.d. 9.20 n.d. n.d. n.d. Geng et al.
prolifera waters of d, dichloromethane/methano = sterols 2017
China. grounded 1(2:1, v/v) in ultrasonic

bath; supernatant
evaporated at 40 °C under
reduced pressure; residue
saponified with 6%
KOH/methanol (80 °C, 1
h), extracted with hexane;
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Ulva
expansa

Mazatlan
Bay,
Mexico

Rinsed
with
distilled
water,
lyophilize,
grounded.

Extracted with
chloroform/methanol
(2:1, v/v), evaporated to
dryness under Nz, sterols
transesterified with
sodium methoxide at RT
90 min

% dw =
SD

Fucosterol +
isofucosterol
78.8%+4.5 (fw)

7.15+0.
42
(Chol +
dehydr
ochol.)

4.34+1.
10

4.53+0.8
0

1.68+0.70

Osuna-
Ruiz et al.,
2019
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Table 3. Selected oligosaccharide and monosaccharides extracted from Ulva species (n.d. = not determined or mentioned in the study)

Taxon Origin Treatments Extraction Oligosaccharides (various targeted analysis) References
procedure
Ulva Fujian Rinsed and hot water, ion-  10.3% of FEP in dry biomass; sulfated polysaccharide with high (1—4)-B-L- Qietal,
clathrata coast, dried exchange, SEC  arabinopyranose; 31.0% sulfate ester in the polysaccharide 2012
China
Ulva Qingdao  Rinsed and sulfur Sulfated ulvans Qietal.,
pertusa coast, dried trioxide/N, N- 2005
China dimethylforma
mide (SO3—
DMF) in
formamide
Ulva Zhousha  Rinsed and DEAE Polysaccharides hyrolysate; mainly composed of mannose, xylose, and Xuetal.,
prolifera n, air-dried cellulose-52 glucose. 2015
Zhejiang and SEC
, China
Ulva Monastir Rinsed and enzymatic and  UroA: Rha: 15- Ara: 0.3- Xyl: 2.7- Glu: 1.4- Guidara et
lactuca , dried chemical 18- 21.5% 0.55% 3.3% 7.5% al., 2019
Tunisia) extraction with  23%
cellulase and
protease
Ulva Qingdao  Rinsed and Hot water (1—4)- (1-3)-and (1—4)- (1-3)-Gal (1-4)-Xyl Qietal.,
linza coast, dried extraction and Rha (1-2)- GluA 2013
China SEC Rha
Ulva sulfated glucuronorhamnans
lactuca, (Multiple references, e.g., Bikker et al., 2016; Lahaye & Robic, 2007; Li et al.,
linza, 2018b; Wang et al., 2013)
compressa,
prolifera,
intestinalis
Ulva Qingdao  Rinsed and Hot water, UroA:  Sulfate Rha, Man, (-D- (-L-IdopA- Pengzhan
pertusa coast, dried precipitation by 23.2%  groups Gal Ara GlepA-(1- (1> 4)--L- et al., 2003
China ethanol 17% > 4)--L- Rhap 3S)
Rhap 3S)
Ulva Qingdao  Dried Hot water, sulfate  UroA Rha Glu Xyl, Glc, Mao et al.,
conglobata  coast, precipitation ester 10.8-14.9% 63-72% 13- Man 2006
China with ethanol, 23.04 - mol 21%mol 1-3.3%mol
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Ulva Northwe  Dried Hot and cold n.d. Guerra-

neumatoid st water Rivas et
ea, Mexican al., 2011;
fasciata, Pacific

lactuca, coast

Note: SEC = Size exclusion chromatography
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Table 4 Selected vitamins extracted from Ulva Species

Taxon Origin Treatments Extraction procedure Vitamins References
A B2 B9 B1 C E
Ulva Northwest Dried Vitamins were analysed by 9581 1.99 1.08 4.70 9420 19.70  Taboada et
rigida Iberian HPLC Ul/kgdw mgkg g/kg mg/kg  mgkg mgkg al., 2010
coast, dw dw dw
Spain
Ulva Coasts, Dried (sun),  a-Tocopherols and 1071.4  Ortizetal.,
lactuca Northern milled tocotrienols in lipid extracts +9.2 2006
Chile (flour) analyzed by HPLC mg/kg
dw
Ulva Margarita Dried (sun),  Ferrozine method 37.8 Garcia-Casal
sp. Island, freeze-dried mg/g et al., 2007
Venezuela dw
Ulva Pameungpeu Dried (sun, Vitamin A analyzed by <0.5 0.86 4.87 Rasyid, 2017
lactuca k Indonesia  5d), HPLC; Vitamins Bl and B2  UI/100g  mg/kg mg/kg
grounded analyzed by UPLC dw dw dw
Ulva Shallow Washed Vitamin B complex clarified <3.0 <3.0 <10.0 Farzanah et
intestinalis  waters, (2025 °C) with Carrez solutions; ppm fw ppm ppm al., 2022
Corniche Vitamin C treated with zinc fw
Bay Abu acetate dihydrate and
Dhabi. potassium ferrocyanide
trihydrate; both analyzed by
HPLC
Ulva spp. Upper Dried (60°C, Analysed by HPLC. 9.10£  Durmazetal.,
infralittoral, 3 h) (a-tocopherol only) 0.50 2008
Black Sea, ug/g
Turkey dw
Ulva spp. Serangan Dried (50°C, a-tocopherol by acetonic 19.29 Wrasiati et
Beach, Bali, 0.5 h), Soxhlet extract, colorimetry, mg/100 al., 2019
Indonesia blended g dw
Ulva spp. Mandapam,  Dried Lipids extracted by Folch n.d. 0.06 Debbarma et
Tamil Nadu, (shade, 3d) method, samples saponified, mg/100 al., 2016
India. powdered vitamins extracted with gdw

petroleum ether
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Table 5. Selected carotenoids extracted from Ulva species (n.d. = not determined or mentioned in the study).

Taxon Origin Treatments Extraction procedure Carotenoids References
=
= g g o
R s
B g = g s
Z = = % ‘3 ~ =
E 3 = 3 E H $
=) = > N - 4 &
Ulva Coasts Dried Macerated, extracted in ng/g 16.49 414+ 395+ 468+ 381+ n.d. Bhat et al.
compressa Mangaluru overnight at ice-cold acetone, dw 0.06 0.18 0.51 0.08 2021
India 40 °C analyzed by HPLC
Ulva Coasts Dried Macerated, extracted in ug/g 32.87 0.02+ 11.26 21.13+ 047+ n.d. Bhat et al.
lactuca Mangaluru overnight at ice-cold acetone, dw 0.01 +0.12 0.07 0.11 2021
India 40 °C analyzed by HPLC
Ulva Coasts Dried Macerated, extracted in ug/g 1.41 n.d. 025+ 09+ 026+ n.d. Bhat et al.
fasciata Mangaluru overnight at ice-cold acetone, dw 0.04 0.12 0.00 2021
India 40 °C analyzed by HPLC
Ulva Coasts Dried Macerated, extracted in ug/g 43.75 366 947+ 1023+ 884+ 10.85+ Bhat et al.
prolifera Mangaluru overnight at ice-cold acetone, dw 0.1 0.07 0.12 0.12 0.11 2021
(India) 40 -C analyzed by HPLC
Ulva Intertidal zone Enriched Pulverized in liquid Chla! n.d. 6.64 n.d. 32.7 7.98 7.52 Zhang et al.
linza Qingdao, seawater, nitrogen, pigments 2015
China. frozen in extracted with cold 85%
liquid N, aqueous acetone
Ulva North  River Seawater, Frozen samples extracted pumol/  n.d. 26.4 1.7 44.2 11.2 n.d. Franklin et
rotundata  near Baufort, frozen in with 100% acetone, m? al. 1992,
N.C, USA. liquid N, pigments analyzed by Eismann et
HPLC al. 2020
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Ulva North River Seawater, Extracted with 100% pmol/  n.d. 12 4.0 33.6 4.07 n.d. Franklin et
rotundata  near Baufort, lyophil. acetone, pigments m? al. 1994,
N.C, USA. analyzed by HPLC Eismann et
al. 2020
Ulva Owase, Mie Seawater, Extracted with 100% mg/g n.d. 2.1+ n.d. 7.5+ 22+ 6.0% Eismann et
pertusa Prefecture, dried methanol, analyzed by dw 0.5 0.7 0.4 0.5 et al. 2020
Japan. HPLC
Ulva Japan PES medium  Extracted with 100% mg/ n.d. 85+ n.d. 27.8 £ 6.9 + 19.7 £ Kakinuma et
pertusa dried methanol, analyzed by 100 g 0.36 1.01 0.74 1.09 al. 2001
HPLC dw
Ulva Japan PES medium  Extracted with 100% mg/ n.d. 140+ nd. 37.6 £ 9.5+ 465+ Kakinuma et
pertusa dried methanol, analyzed by 100g 1.72 2.9 0.42 10.3 al. 2001
HPLC. dw
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Table 6. Selected phenolic compounds extracted from Ulva species (n.d. = not determined or mentioned in the study).

Taxon Origin Treatments Extraction procedure Phenolics References
_ = References
- - G-
= = < = < -
= 8 B £ 3 Z
g Fz 5 £ g |& |5
= £ & & 3 3 |3
Ulva Gulf of Dried Phenols were extracted with mg/kg | n.d. n.d. n.d. n.d. 0.44 10.2 Abirami and
fasciata Mannar methanol and were analysed by dw Kowsalya
coast, India HPLC 2016
Ulva Ras El Bar Dried Alga biomass was extracted using | mg/kg | n.d. 0.84 0.39 n.d. 0.067 | n.d. El-Bilawy et
fasciata coast the Soxhlet extraction method dw al. 2022
using a mixture of methanol and
hexane and were analysed by
HPLC
Ulva Saurashtra Dried Phenols were extracted with mg/kg | n.d. 10 n.d. n.d. n.d. n.d. Tanna,
fasciata coast, India aqueous methanol and were dw Brahmbhatt,
analysed by HPLC and Mishra
2019
Ulva Egyptian Dried Phenols were extracted with g/kg n.d. n.d. 62 n.d. n.d. n.d. El-Gammal
lactuca marine methanol/water and were analysed | dw et al. 2024
environment by HPLC
Ulva Nuniarchara | Dried Phenols were extracted with mg/kg | n.d. 2.6 6.6 n.d. 2.8 n.d. Bokhtiar et
lactuca sea beach in ethanol/water and were analysed dw al. 2024
Cox’s Bazar, by HPLC
Bangladesh
Ulva Saurashtra Dried Phenols were extracted with mg/kg | n.d. n.d. n.d. n.d. n.d. n.d. Tanna,
lactuca coast, India aqueous methanol and were dw Brahmbhatt,
analysed by HPLC and Mishra
2019
Ulva Iskenderun,  Dried Phenols were extracted with g/kg n.d 1093  7.33 n.d 14.56 | 2.85 Korkmaz
lactuca Turkey ethanol/water and were analysed dw 2025
by LC-MS/MS
Ulva Lara coast Dried Phenols were extracted with mg/kg | nd 0.011 | 0.012 n.d n.d n.d Fatma et al.
lactuca Antalya, hexaneisopropanol and were dw 2015
Turkey analysed by HPLC
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Ulva Gulf of Dried Phenols were extracted with mg/kg | n.d. 0.07 n.d. n.d. n.d. 0.01 Kumar et al.

rigida Mannar, methanol and were analysed by dw 2020
Mandapam LC-MS/MS

Ulva sp. Mediterranea | Dried Phenols were extracted with an mg/kg | 294 n.d n.d 259 | nd n.d Abdel-
n Sea at Abu ethanolic solvent and were dw Razek et al.
Qir, analysed by GC/MS 2024
Alexandria
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