"A database of *Ulva* literature within SeaWheat Cost Action"

Lamprini Malea, Orezia Seitidou & Sotiris Orfanidis Fisheries Research Institute, 64007 Nea Peramos, Kavala, Greece

The "SeaWheat" COST Action has compiled a comprehensive literature database focused on Ulva, comprising a total of 363 peer-reviewed articles. This collection reflects a relatively balanced representation of interests across six distinct Working Groups (Figure 1).

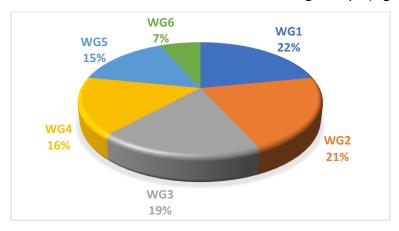


Figure 1. Percentages (%) of literature related to *Ulva* Working Groups (WG).

The main topics covered in these publications emphasise biology (17%), cultivation (17%), and bioactive compounds (16%) of *Ulva*. Other notable areas include ecosystem services (11%), ecology (9%), animal feed (8%), and biorefinery (7%). In contrast, food (6%), economic (6%) and social aspects 3%) are less extensively represented (Figure 2).

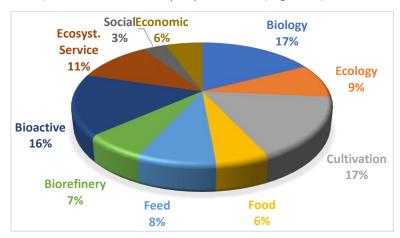


Figure 2. Objectives or topics of the *Ulva* database literature.

The list of different documents (papers) with authors, publication titles, and years of publication is presented in Table 1. This database serves as a valuable resource for researchers and practitioners interested in the diverse applications and research areas associated with *Ulva*.

Link of access:

https://www.dropbox.com/scl/fo/17kqpzuv0i2elc5jafuvt/h?rlkey=o2zjo4bkugqlovt5xi4nz zvp6&dl=0

Table 1. List of different papers with authors, publication title, and year of publication.

a/a	Author's Name	Publication Title	Year
1	Diken et al	The potential inhibitory effects of microalgae and macroalgae on protease activities of Argyrosomus regius (Pisces, Scianidae) larvae using in vitro assays	2016
2	Shpigel et al	The suitability of several introduced species of abalone (Gastropoda: Haliotidae) for land-based culture using pond-grown seaweed in Israel.	1996
3	Blomme et al.	A molecular toolkit for the green seaweed Ulva mutabilis	2021
4	Bolton et al	Integrated Systems Incorporate Seaweeds	2006
5	Bonanno et al	Chemical elements in Mediterranean macroalgae. A review.	2018
6	Bonanno et al	Trace elements in Mediterranean seagrasses and macroalgae: a review.	2018
7	Bonanno et al	Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica.	2020
8	Bonanno et al	Seagrass Cymodocea nodosa and seaweed Ulva lactuca as tools for trace element biomonitoring: a comparative study.	2020
9	Brink-Hull et al	Dietary effects on the reproductive performance of the sea urchin Tripneustes gratilla II: Implications for offspring performance	2022
10	Broader et Shpigel	Comparative performances of juvenile Haliotis roei fed on enriched Ulva rigida and various artificial diets	2001
11	Charrier et al.	Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture	2017
12	Chopin et al	Multitrophic Integration for Sustainable Marine Aquaculture	2008
13	Cohen et Neori	Ulva lactuca Biofilters for Marine Fishpond Effluents I. Ammonia Uptake Kinetics and Nitrogen Content	1991
14	Guttman et al.	Combinations of Ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents	2018
15	Greiserman et al.	Co-production of monosaccharides and hydrochar from green macroalgae Ulva (Chlorophyta) sp. with subcritical hydrolysis and carbonisation	2019
16	Coste et al.,	Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan- degrading enzymatic bacterial crude extract	2015
17	Cyrus et al	The role of the green seaweed Ulva as a dietary supplement for full life-cycle grow-out of Tripneustes gratilla	2015
18	Cyrus et al	The advantages of Ulva (Chlorophyta) as an additive in sea urchin formulated feeds: effects on palatability, consumption and digestibility	2015
19	Cyrus et al	The use of stable isotope ratios $\delta 13C$ and $\delta 15N$ to track the incorporation of Ulva and other important dietary ingredients into the gonads of the sea urchin Tripneustes gratilla	2019
20	Martinez et al	Macro- and microalgae in the BIOSEA project. Contents of priority compounds, their dynamics and main uses	2017
21	De Clerck et al.	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome	2018
22	Dvir et al.	Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system	1999
23	Ellner et al.	Simulation model of recirculating mariculture with seaweed biofilter: development and experimental tests of the model	1996
24	Qiu et al.	Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei	2018
25	Fernadez-Diaz et al.	Polymer chitosan nanoparticles functionalised with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages	2017
26	Figueroa et al.	Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): responses to short-term stress	2009
27	Figueroa et al.	Acclimation of Red Sea macroalgae to solar radiation: photosynthesis and thallus absorptance	2009
28	Figueroa et al.	Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition	2014
29	Figueroa et al.	Continuous monitoring of in vivo chlorophyll a fluorescence in Ulva rigida (Chlorophyta) submitted to different CO2, nutrient and temperature regimes	2014
30	Figueroa et al.	Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution	2021
31	Gruskiene et al.	Nisin-Loaded Ulvan Particles: Preparation and Characterisation	2021
32	Guttman et al.	Combinations of Ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents	2018

33	Hofmann et al.	Cryptic diversity of Ulva (Ulvales, Chlorophyta) in the Great Bay Estuarine System (Atlantic USA): introduced and indigenous distromatic species	2010
34	Hofmann	AN ASSESSMENT OF THE BIODIVERSITY AND BIOREMEDIATION POTENTIAL OF DISTROMATIC ULVA SPP. (CHLOROPHYTA) IN THE GREAT BAY ESTUARINE SYSTEM OF NEW HAMPSHIRE AND MAINE, U.S.A	2007
35	Shpigel et al.	Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus	2005
36	Israel et al.	Biomass Yield, Photosynthesis and Morphological Expression of Ulva lactuca	1995
37	Shpigel et al.	Is Ulva sp. able to be an efficient biofilter for mariculture effluents?	2019
38	Kamermans et al.	Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta)	1998
39	Karavoltsos et al.	Copper complexing properties of exudates and metabolites of macroalgae from the Aegean Sea	2013
40	Kamermans et al.	Role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer lagoon, The Netherlands)	1998
41	Kikionis et al.	The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications	2021
42	Kikionis et al.	Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO	2015
43	Differente sources	New biomass estimate of deep sea microbial organisms	2008
44	Liu et al.	Transcriptional dynamics of gametogenesis in the green seaweed Ulva mutabilis identifes an RWP-RK transcription factor linked to reproduction	2022
45	Malta et al.	Free-floating Ulva (Ulvaceae, Chlorophyta) in the Southwest Netherlands: species or morphotypes? A morphological, molecular and ecological comparison.	1999
46	Malta et al.	Regulation of spatial and seasonal variation of macroalgal biomass in a brackish, eutrophic lake	2002
47	Malta et al.	Effects of environmental variables on between-year variation of Ulva growth and biomass in a eutrophic brackish lake.	1997
48	Malta et al.	Vertical heterogeneity in physiological characteristics of Ulva spp. mats.	2003
49	Malta & De Nys	The effect of short-term pre-harvest strategies on the carbon constituents of Ulva ohnoi M. Hiraoka et. S. Shimada	2016
50	Masasa et al.	Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis	2021
51	Moon et al.	Fabrication and Characterisation of Neurocompatible Ulvan-Based Layer-by-Layer Film	2020
52	Msuya et Neori	Ulva reticulata and Gracilaria crassa: Macroalgae That Can Biofilter Effluent from Tidal Fishponds in Tanzania	2002
53	Msuya et Neori	Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks	2008
54	Msuya et Neori	THE PERFORMANCE OF SPRAY-IRRIGATED ULVA LACTUCA (ULVOPHYCEAE, CHLOROPHYTA) AS A CROP AND AS A BIOFILTER OF FISHPOND EFFLUENTS	2010
55	Msuya	The influence of culture regimes on the performance of seaweed biofilters in integrated mariculture	2011
56	Neori	The type of N-supply (ammonia or nitrate) determines the performance of seaweed biofilters integrated with intensive fish culture	1996
57	Neori	Use of seaweed biofilters to increase mariculture intensification and upgrade its effluents. Fisheries and Fishbreeding in Israel: Review of Fisheries in Israel.	1991
58	Neori and Guttman	Thoughts on Algae Cultivation toward an Expansion of Aquaculture to the Scale of Agriculture	2017
59	Neori et al.	Ulva lactuca Biofilters for Marine Fishpond Effluents II. Growth Rate, Yield and C:N Ratio	1991
60	Neori et al.	Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units	1996
61	Neori et al.	A sustainable integrated system for culture of fish, seaweed and abalone	2000
62	Neori et al.	A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture	2003
63	Neori et al.	Israeli-Developed Models of Marine Integrated Multi Trophic Aquaculture (IMTA)	2019
64	Neori et al.	The suitability of Ulva fasciata, Ulva compressa, and Hypnea musciformis for production in an outdoor spray cultivation system, with respect to biomass yield and protein	2020
65	Neori et al.	THE NEED FOR A BALANCED ECOSYSTEM APPROACH TO blue revolution aquaculture	2007
66	Neori et al.	Integrated aquaculture: rationale, evolution and state of the art emphasising seaweed biofiltration in modern mariculture	2004
67	Neori et al.	The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system	1998

68	Neveux et al.	The Bioremediation Potential of Seaweeds: Recycling Nitrogen, Phosphorus, and Other Waste Products	2018
69	Nobre Neori et al	Ecological and economic assessment of the role of seaweeds in abalone integrated multi-trophic aquaculture – a South African case study	2009
70	Nobre Neori et al	Ecological—economic assessment of aquaculture options: Comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds	2010
71	Onomu et al.	The effect of fresh seaweed and a formulated diet supplemented with seaweed on the growth and gonad quality of the collector sea urchin, Tripneustes gratilla, under farm conditions	2020
72	Podolean et al.	Catalytic transformation of the marine polysaccharide ulvan into rare sugars, tartaric and succinic acids	2022
73	Prech et al.	Magnetic Fe@Y Composites as Efficient Recoverable Catalysts for the Valorization of the Recalcitrant Marine Sulfated Polysaccharide Ulvan	2020
74	Rosa et al.	Uptake of enrofloxacin from seawater to the macroalgae Ulva and its use in IMTA systems	2020
75	Rosa, J. et al.	Oxytetracycline accumulation in the macro algae Ulva Lactuca: Potential risk for IMTA systems	2019
76	Roussis et al.	Volatile Metabolites of the Green Alga Ulva rigida (C.Ag)	2000
77	Leston et al.	The effects of the nitrofuran furaltadone on ulva lactuca	2011
78	Leston et al.	A Multiresidue approach for the simultaneous quantification of antibiotics in macroalgae by Ultra-High Performance Liquid Chromatography - tandem Mass Spectrometry	2016
79	Leston et al.	A LC–MS/MS methodology to determine furaltadone residues in the macroalgae Ulva lactuca	2011
80	Schuenhoff et al.	A semi-recirculating, integrated system for the culture of fish and seaweed	2003
81	Shahar & Guttman	An integrated, two-step biofitration system with Ulva fasciata for sequenced removal of ammonia and nitrate in mariculture effluents	2020
82	Shahar & Guttman	Integrated biofilters with Ulva and periphyton to improve nitrogen removal from mariculture effluent	2021
83	Shahar et al.	Changes in metabolism, growth and nutrient uptake of Ulva fasciata (Chlorophyta) in response to nitrogen source	2020
84	Cyrus et al	The role of the green seaweed Ulva as a dietary supplement for full life-cycle grow-out of Tripneustes gratilla	2015
85	Schuenhoff et al.	A Semi-Commercial, Integrated System for the Culture of Fish and Seaweed.	2003
86	Neori et al.	A sustainable integrated system for culture of fish, seaweed and abalone	2000
87	Guttman et al.	An integrated Ulva-periphyton biofilter for mariculture effluents: Multiple nitrogen removal kinetics	2019
88	Neori et al.	The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system	1998
89	Shpigel et al.	The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus	2004
90	Stengel et al.	Short-term effects of CO2, nutrients and temperature on three marine macroalgae under solar radiation	2014
91	Toskas et al.	Nanofibers based on polysaccharides from the green seaweed Ulva Rigida	2011
92	Toskas et al.	Ulvan and ulvan, chitosan polyelectrolyte nanofibrous membranes as a potential substrate material for the cultivation of osteoblasts	2012
93	Tziveleka et al.	Ulvan, a bioactive marine sulphated polysac charide as a key constituent of hybrid biomaterials: A review	2019
94	Tziveleka et al.	Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme	2018
95	Tziveleka et al.	Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterisation and Evaluation of Their Potential Use in Bone Tissue Engineering	2020
96	Van der Loos et al.	Characterising algal microbiomes using long-read nanopore sequencing	2021
97	Vlachou et al.	Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan	2018
98	Wichard et al.	The green seaweed Ulva: a model system to study morphogenesis	2015
99	Zemah-Shamir s. et al.	Cultivating marine macroalgae in CO2-enriched seawater: A bio-economic approach	2021
100	Schlussbericht	Projekt Mak-Pak - Teilprojekt 2	2020
100	Î.		
101	Steinhagen et al.	Conspecificity of the model organism Ulva mutabilis and Ulva compressa (Ulvophyceae, Chlorophyta)	2019

103	Steinhagen et al.	Molecular analysis of Ulva compressa (Chlorophyta, Ulvales) reveals its morphological plasticity, distribution and potential invasiveness on German North Sea and Baltic Sea coasts	2018
104	Steinhagen et al.	Surveying seaweeds from the Ulvales and Fucales in the world's most frequently used artificial waterway, the Kiel Canal	2019
105	Leston et al	Analysis of chloramphenicol residues in the macroalgae Ulva lactuca through ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS)	2015
106	Prato et al	Influence of a prepared diet and a macroalga (Ulva sp.) on the growth, nutritional and sensory qualities of gonads of the sea urchin <i>Paracentrotus lividus</i>	2018
107	Juul et al	Digestibility of seaweed protein from Ulva sp. and Saccharina latissima in rats.	2022
108	Juul et al	Ulva fenestrata protein – comparison of three extraction methods with respect to protein yield and quality	2021
109	Samarasinghe et al	A descriptive nutritional analysis of seaweeds, Ulva sp., Saccharina latissima and Ascophyllum nodosum harvested from Danish and Icelandic waters.	2021
110	Nørskov et al	Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry.	2021
111	Araujo et al	Current status of the algae production industry: An emerging sector of the Blue Bioeconomy	2021
112	Bruhn et al	Høst af eutrofieringsbetingede masseforekomster af søsalat - status på viden om miljøeffekter og økonomi (Danish)	2020
113	Juul et al	Protein solubility is increased by antioxidant addition during protein extraction from the green macroalgae, Ulva sp.	2020
114	Sode et al	Bioremediation of reject water from anaerobically digested waste water sludge with Ulva lactuca (Chlorophyta).	2013
115	Albert et al	Nitrous oxide emission from Ulva lactuca is stimulated by nitrite, nitrate and light. Results from batch-culture incubations	2013
116	Nielsen et al	Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production	2012
117	Bruhn et al	Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion	2011
118	Leliaert et al.	Research note: identity of the Qingdao algal bloom. Phycological research, 57(2), 147-151.	2009
119	Leliaert et al.	Quindao algal bloom culprit identified	2008
120	Shpigel et al	A proposed model for "environmentally clean" land-based culture of fish, bivalves and seaweeds	1993
121	Shpigel et al	Protein content determines the nutritional value of the seaweed Ulva lactuca for the abalone Haliotis tuberculata and Haliotis discus hannai	1999
122	Shpigel et al	Ulva lactuca biofilter from a land-based Integrated Multi Trophic Aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis.	2018
123	Shpigel et al	Ulva lactuca from an Integrated Multi-Tropic Aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet.	2017
124	Shpigel et al	The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): nitrogen partitioning and proportional configurations	2018
125	Shpigel et al	Effect of diets and light regimes on calcification and somatic growth of the sea urchin Tripneustes gratilla	2020
126	Ben Ari et al.	Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture	2014
127	Ak et al	Effect of sodium acetate and sodium nitrate on biochemical composition of green algae Ulva rigida	2014
128	Mhatre et al (Reena Pandit)	Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca	2019
129	Mhatre et al (Reena Pandit)	Influence of nitrogen source on photochemistry and antenna size of the photosystems in marine green macroalgae, Ulva lactuca	2018
130	Agarwal et al (Reena Pandit)	Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation	2019
131	Mhatre et al (Reena Pandit)	Pilot scale flat panel photobioreactor system for mass production of Ulva lactuca	2017
132	Ak et Künili	Influence of Ulva rigida (Ulvophyceae) aqueous extracts on the growth and biochemical composition of Treptacantha barbata (Phaeophyceae) (in Turkish)	2020
133	Ak et Türker	Free Radical Scavenging Activity and Biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae)	2019
134	Ak, Öztaşkent et Topçu	Effect of different carbon sources on green algae Ulva rigida (C. Agardh) culture (İn Turkish)	2011

135	Hernández I, et al.	Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium	2002
136	Sánchez-García et al.	Freshness quality and shelf life evaluation on the seaweed Ulva rigida through physical, chemical, microbiological and sensory methods	2021
137	Hernández et al.	Growth dynamics of Ulva rotundata (Chlorophyta) in a fish farm: implications for biomitigation at a large scale.	2008
138	Hernández et al.	Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved nutrients from Sparus aurata L. waste waters.	2005
139	Vergara et al.	Photoacclimation of Ulva rigida and U. rotundata (Chlorophyta) arranged in canopies	1998
140	Hernández et al.	Biomass and growth dynamic of Ulva species in Palmones river estuary	1997
141	Bermejo et al.	Biomass and nutrient dynamics of major green tides in Ireland: Implications for biomonitoring.	2022
142	Karki et al.	Mapping spatial distribution and biomass of intertidal Ulva blooms using machine learning and earth observation	2021
143	van Ginneken et al.	Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas	2011
144	van Ginneken et de Vries	TOWARDS A SEAWEED BASED ECONOMY	2015
145	van Ginneken et al.	A Suggested "Seaweed-Plantation Model" to Tackle the Looming Phosphorus Crises in the 21st Century at the Rhine/North-Sea System".	2015
146	van Ginneken et al.	Seaweed Competition: Ulva Sp. has the Potential to Produce the Betaine Lipid Diacylglyceryl O-4'-(N,N,N,-Trimethyl) Homoserine (DGTS) in Order to Replace Phosphatidylcholine (PC) Under Phosphate-Limiting Conditions in the P-Limited Dutch Wadden Sea and Outcompete an Aggressive Non[1]Indigenous Gracilaria vermiculophylla Red Drift Algae Out of this Unique Unesco World Heritage Coastal Area	2017
147	Nederlof et al	Giant Mealworm (Zophobas Morio) as a "Vehicle" to Transport Healthy Nutritional Ingredients from Seaweed (Ascophyllum Nodosum) towards Fish Cultured: Amino Acids	2017
148	van Ginneken et de Vries	Seaweeds as Biomonitoring System for Heavy Metal (HM) Accumulation and Contamination of Our Oceans	2018
149	van Ginneken et al.	Some Mechanism Seaweeds Employ to Cope with Salinity Stress in the Harsh Euhaline Oceanic Environment	2018
150	van Ginneken et al.	THE PHOTOSYNTHETIC SYSTEM OF THE SEAWEEDS: THE SEAWEED PARADOX	2017
151	van Ginneken et al.	Seaweed Biotechnology to Combat DesertificationSeaweed Biotechnology to Combat Desertification	2018
152	van Ginneken et de Vries	Will Our Health Come from Our Oceans The 21st Century?	2016
153	van Ginneken et al.	Plastic in the Food Chain and the Expected Pandemic of Cancer?	2019
154	van Ginneken et de Vries	Towards A Seaweed Based Economy": The Global Ten Billion People Issue At The Midst Of The 21St Century	2016
155	van Ginneken	[Editorial]: "A Greedy Man in a Hungry World": does hunger lead to depression and anxiety?"	2018
156	van Ginneken	The Application of the Seaweeds in Neutralising the "Ocean Acidification" as a Long- Term Multifaceted Challenge	2019
157	van Ginneken et de Vries	Imaging Spectroscopy of a Green-, Brown-, and Red-Seaweed under Laboratory Conditions	2017
158	Karavoltsos et al	Copper complexing properties of exudates and metabolites of macroalgae from the Aegean Sea	2013
159	Podolean et al	Catalytic transformation of the marine polysaccharide ulvan into rare sugars, tartaric and succinic acids	2013
160	Bermejo et al.	Nutrient dynamics and ecophysiology of opportunistic macroalgal blooms in Irish estuaries and coastal bays	2020
161	Ghaderiardakani, et. al.	Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory	2017
162	Ghaderiardakani, et. al.	Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers	2019
163	Ghaderiardakani, et. al.	Analysis of algal growth- and morphogenesis-promoting factors in an integrated multi-trophic aquaculture system for farming Ulva spp.	2019
164	Ghaderiardakani, et. al.	Microbiome-Dependent Adaptation of Seaweeds Under Environmental Stresses: A Perspective	2020
165	Stanley et al.	Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha.	1999
166	Callow et al.	Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: an overview.	2000
167	Bermejo et al.	Spatial and temporal variability of biomass and composition of green tides in Ireland.	2019

168	Wan et al.	What can sea lettuce tell us about coastal pollution?	2017
169	Fort et al.	Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution	2022
170	Fort et al.	A sequencing-free assay for foliose Ulva species identification, hybrid detection and bulk biomass characterisation	2021
171	Fort et al.	Foliose Ulva Species Show Considerable Inter-Specific Genetic Diversity, Low Intra- Specific Genetic Variation, and the Rare Occurrence of Inter-Specific Hybrids in the Wild	2020
172	Fort et al.	Extensive Variations in Diurnal Growth Patterns and Metabolism Among Ulva spp. Strains	2019
173	da Costa et al	Site-specific lipidomic signatures of sea lettuce (Ulva spp., Chlorophyta) hold the potential to trace their geographic origin	2020
174	Lopes et al	Bioactive complex lipids from seaweeds: Current knowledge and future prospects	2021
175	Marques et al	Macroalgae blends as a valuable source of polyunsaturated and healthy fats for nutritional and food applications	2021
176	Moreira et al	Lipids of Commercial Ulva spp. of Different Origins: Profiling and Relevance for Seaweed Valorization	2021
177	Lopes et al	Valuing bioactive lipids from green, red and brown macroalgae from aquaculture, to foster functionality and biotechnological applications	2021
178	Lopes et al	Insights of species-specific polar lipidome signatures of seaweeds fostering their valorisation in the blue bioeconomy	2021
179	Moreira et al	Seasonal plasticity of the polar lipidome of Ulva rigida cultivated in a sustainable integrated multi-trophic aquaculture	2020
180	Lopes et al	Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture	2019
181	Strauss S	Fertility in Ulva (Master thesis)	2019
182	Vallet et al.	A new glance at the chemosphere of macroalgal–bacterial interactions: In situ profiling of metabolites in symbiosis by mass spectrometry. Beilstein J. Org. Chem. 17: 1313–1322	2021
183	Nahor et al.	Flow cytometric measurements as a proxy for sporulation intensity in the cultured macroalga Ulva (Chlorophyta). Botanica Marina 64: 83-92.	2021
184	Alsufyani et al.	Macroalgal–bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta), Journal of Experimental Botany 71: 3340-3349	2020
185	Polikovsky et al.	Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production. Algal Research 49: 101945	2020
186	Califano et al.	Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science. 7:52	2020
187	Vockenberg et al.	Sorption behaviour of amine micropollutants on polyethylene microplastics-Impact of aging and interaction with green seaweed. Environmental Science: Processes & Impacts 22:1678-1687.	2020
188	Kessler et al	Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Molecular Ecology 27: 1808-1819	2018
189	Alsufyani et al.	Time course exo-metabolomic profiling in the green marine macroalga Ulva (Chlorophyta) for identification of growth phase-dependent biomarkers. Marine Drugs 15: 14	2017
190	Kessler et al	In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging. Analytical Bioanalytical Chemistry 409: 4893-4903	2017
191	Fernand et al	Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews. 75: 35-45	2017
192	Grueneberg et al	Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS ONE 11: e0146307	2016
193	Wichard T	Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science 6:86	2015
194	Vesty et al.	Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Frontiers in Plant Science 6:15.	2015
195	Oertel et al.	Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome. Journal of Phycology 51:963-979	2015
196	Alusfyani et al.	Prevalence and mechanism of polyunsaturated aldehydes production in the green tide forming macroalgal genus Ulva (Ulvales, Chlorophyta). Chemistry and Physics of Lipids, 183, 100-109	2014
197	Spoerner et al.	Growth and Thallus Morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. Journal of Phycology 48, 1433-1447	2012

198	Wichard et Oertel	Gametogenesis and Gamete release of Ulva mutabilis and Ulva lactuca (Chlorophyta): Regulatory effects and chemical characterisation of the "swarming inhibitor". Journal of	2010
4.5.5		Phycology 46, 248-259	2621
199	Lähteenmäki-Uutela et al.	European Union legislation on macroalgae products. Aquaculture International 29, 487–509	2021
200	Pajusalu et al.	Results of laboratory and field experiments of the direct effect of increasing CO2 on net primary production of macroalgal species in brackish-water ecosystems	2013
201	Paalme et Kukk	Comparison of net primary production rates of Pilayella littoralis (L.) Kjellm. and other dominating macroalgal species in Kõiguste Bay, northeastern Baltic Sea	2003
202	Ashkenazi et al.	A novel two-stage seaweed integrated multi-trophic aquaculture	2018
203	Qiu et al.	Green seaweed Ulva sp. as an alternative ingredient in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei	2018
204	Hernández et al.	Isolation and chemical characterisation of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh.	2010
205	Zertuche-Gonzalez et al.	The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence.	2009
206	Pérez-Mayorga et al.	Nitrogen uptake and growth by the opportunistic macroalga Ulva lactuca (Linnaeus), during the internal tide.	2011
207	Zertuche-González et al	Seasonal and inter-annual production of sea lettuce (Ulva sp) in outdoor cultures based on commercial size ponds	2021
208	Revilla-Lovano et al	Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds	2021
209	Pacheco-Ruiz et al	Biomass and potential comercial utilisation of Ulva lactuca (Chlorophyta, Ulvaceae) beds along the north-west coast of the Gulf of California. Phycologia	2002
210	Golberg et al	Proposed Design of Distributed Marine Biorefineries: Thermodynamics, Technology, and Sustainability Implications for Developing economies. Biofuels, Bioproducts & Biorefining 8(1): 67-82. 2014.	2014
211	Golberg et Liberzon	Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Research	2015
212	Vitkin et al	BioLEGO — a web-based application for biorefinery design and evaluation of serial biomass fermentation. Technology	2015
213	Lehahn et al	Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal research	2016
214	Polikovsky et al	Towards marine biorefineries: Selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innovative Food Science & Emerging Technologies	2016
215	Jian et al	Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Scientific Reports	2016
216	Fernand et al	Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews	2017
217	Shefer et al	Carbohydrate-based phenotyping of the green macroalga Ulva fasciata using near infrared spectrometry: potential implications for marine biorefinery. Botanica Marina	2017
218	Chemodanov et al	Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresource Technology	2017
219	Chemodanov et al	Net Primary Productivity, biofuel production and CO2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean. Energy Conversion and Management	2017
220	Robin et al	Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. Algal Research.	2017
221	Ingle et al	Marine integrated pest management (MIPM) for sustainable seagriculture. Algal Research	2018
222	Robin et al	Deashing macroalgae biomass by pulsed electric field treatment. Bioresource Technology.	2018
223	Chudnovsky et al	Monitoring complex monosaccharide mixtures derived from macroalgae biomass by combined optical and microelectromechanical techniques	2018
224	Habiby et al	Exergy efficiency of light conversion into biomass in the green macroalga Ulva sp. (Chlorophyta) cultivated under the pulsed light in a photobioreactor. Biotechnology and Bioengineering.	2018
225	Zollman at el	Exergy efficiency of solar energy conversion to biomass of green macroalgae Ulva (Chlorophyta) in the photobioreactor. Energy Conversion and Management.	2018
226	Robin et al	Functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustainable Chemistry &	2018
227	Kazir et al	Engineering. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids	2019

228	Gosch et al	Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresource Technology.	2019
229	Polikovsky et al	In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields. Food Chemistry	2019
230	Peleg et al	Sparse NIR Optimisation method (SNIRO) to quantify analyte composition with visible (VIS)/near infrared (NIR) spectroscopy (350nm-2500nm). Analytica Chimica Acta.	2019
231	Prabhu et al	Starch from the sea: the green macroalga Ulva sp. as a potential source for sustainable starch production in the marine biorefinery. Algal Research.	2019
232	Chemodanov et al	Feasibility study of Ulva sp. (Chlorophyta) intensive cultivation in a coastal area of the Eastern Mediterranean Sea. Biofuels, Bioproducts & Biorefining	2019
233	Greiserman et al	Co-production of monosaccharides and hydrochar from green macroalgae Ulva (Chlorophyta) sp. with subcritical hydrolysis and carbonisation. Bioenergy Research	2019
234	Zollmann et al	Deep water nutrient supply for an offshore Ulva sp. cultivation project in the Eastern Mediterranean Sea: experimental simulation and modeling. Bioenergy Research	2019
235	Prabhu et al	High-voltage pulsed electric fields preprocessing enhances extraction of starch, proteins and ash from marine macroalgae Ulva ohnoi. ACS Sustainable Chemistry & Engineering	2019
236	Zollmann et al	Green technology in green macroalgal biorefineries. Phycologia	2019
237	Ingle et al	Challenges for marine macroalgal biomass production in Indian coastal waters. Botanica Marina	2019
238	Vitkin et al	Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PlosOne	2019
239	Prabhu et al	Energy efficient dewatering of far offshore grown green macroalgae Ulva sp. biomass with pulsed electric fields and mechanical press. Bioresource Technology	2020
240	Levkov et al	High-voltage pulsed electric field laboratory device with asymmetric voltage multiplier for marine macroalgae electroporation. Innovative Food Science and Emerging Technologies	2019
241	Prabhu et al	Integrated biorefinery process for sustainable fractionation of Ulva ohnoi (Chlorophyta): process optimisation and revenue analysis. Journal of Applied Phycology	2020
242	Traugott et al	Aeration and nitrogen modulated growth rate and chemical composition of green macroalgae Ulva sp. cultured in a photobioreactor. Algal Research	2020
243	Polikovsky et al	Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production. Algal Research	2020
244	Levkov et al	Asymmetric voltage multiplying circuit coupled to sliding electrodes for biomass fractionation with high-voltage and high current pulsed electric fields. Technology	2020
245	Polikovsky et al	Biorefinery for the co-production of protein, hydrochar and additional co-products from a green seaweed Ulva sp. with subcritical water hydrolysis. Energy Conversion and Management	2020
246	Steinbruch et al	Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar. Bioresource Technology	2020
247	Gnaim et al	Marine Bacteria Associated with the Green Seaweed Ulva sp. for the Production of Polyhydroxyalkanoates. Bioresource Technology	2021
248	Ghosh et al	Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimisation and a priori economic and greenhouse emissions break-even analysis. Science of the Total Environment	2021
249	Nahor et al	Flow cytometric measurements as a proxy for sporulation intensity in the cultured macroalga Ulva (Chlorophyta). Botanica Marina	2021
250	Kazir et al	Physicochemical, rheological and digestibility characterisation of starch extracted from the marine green macroalga Ulva ohnoi. Food Hydrocoloids	2021
251	Bar-Shai et al	Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Scientific Reports	2021
252	Zollmann et al	Multi-scale modeling of intensive macroalgae cultivation and marine nitrogen sequestration. Communications Biology	2021
253	Golberg et al	Hybrid solar-seaweed biorefinery for co-production of biochemicals, biofuels, electricity, and water: Thermodynamics, life cycle assessment, and cost-benefit analysis. Energy Conversion and Management.	2021
254	Ghosh et al	Halophyte biorefinery for polyhydroxyalkanoates production from Ulva sp. hydrolysate with Haloferax mediterranei in pneumatically agitated bioreactors and ultrasound harvesting. Bioresource Technology	2021
255	Shefer et al	Fighting SARS-CoV-2 with green seaweed Ulva sp. extract: extraction protocol predetermines crude ulvan extract anti-SARS-CoV-2 inhibition properties in vitro. PeerJ.	2021
256	Shomron et al	Extract from the Macroalgae Ulva rigida Induces Table Grapes Resistance to Botrytis cinerea. Foods	2022
257	Shlosberg et al	Bioelectricity generation from live marine photosynthetic macroalgae. Biosensors & Bioelectronics	2021

258	Zemach-Shamir et al	Cultivating marine macroalgae in CO2-enriched seawater: a bio-economic approach. Aquaculture	2021
259	Krupnik et al	Dust-borne microbes affect Ulva viability, physiology and epibionts microbial populations. FEMS Microbiology Ecology	2021
260	Calderwood et al	Profiling the activity of edible European macroalgae towards pharmacological targets for type 2 diabetes mellitus. Applied Phycology	2021
261	Quarri & Israel	Seasonal biomass production, fermentable saccharification and potential ethanol yields in the marine macroalga Ulva sp. (Chlorophyta). Renewable Energy	2019
262	Korzen et al	Single step production of bioethanol from the seaweed Ulva rigida using sonication. Royal Society of Chemistry Advances	2015
263	Ashkenazi et al	A novel two-stage seaweed integrated multi-trophic aquaculture. Reviews in Aquaculture	2018
264	Krupnik et al	Native, invasive and cryptogenic Ulva species from the Israeli Mediterranean Sea: risk and potential. Mediterranean Marine Science	2018
265	Orfanidis et Haritonidis	Effect of acclimation temperature on temperature responses of Porphyra leucosticta and Enteromorphalinza from the Gulf of Thessaloniki, Greece	1996
266	Karyotis et al	Marine benthic macrophytes as possible nitrogen source in agriculture	2006
267	Blomme et al.	Ulva: An emerging green seaweed model for systems biology	2023
268	Hardegen et al.	Lifecycle-dependent toxicity and removal of micropollutants in algal cultures of the green seaweed <i>Ulva</i> (Chlorophyta)	2023
269	Hmani et al.	High-temperature stress induces bacteria-specific adverse and reversible effects on <i>Ulva</i> (Chlorophyta) growth and its chemosphere in a reductionist model system	2023
270	Obolski et al.	Modeling the growth and sporulation dynamics of the macroalga <i>Ulva</i> in mixed-age populations in cultivation and the formation of green tides	2022
271	Ulrich et al.	Thallusin Quantification in Marine Bacteria and Algae Cultures	2022
272	Wichard	From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture	2022
273	Ashkenazi et al.	Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun- Protection Compounds	2022
274	Massocato et al.	Growth, biofiltration and photosynthetic performance of <i>Ulva</i> spp. cultivated in fishpond effluents: An outdoor study	2022
275	Massocato et al.	Short-term nutrient removal efciency and photosynthetic performance of Ulva pseudorotundata (Chlorophyta): potential use for Integrated Multi-Trophic Aquaculture (IMTA)	2023
276	Massocato et al.	Characterisation and Biological Activities of the Ulvan Polysaccharide-Rich Fraction Obtained from Ulva rigida and Ulva pseudorotundata and Their Potential for Pharmaceutical Application	2024
277	Wang et al.	Potential of Ulva prolifera in phytoremediation of seawater polluted by cesium and cobalt: an experimental study on the biosorption and kinetics*	2022
278	Mapelli-Brahm et al.	Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the	2023
279	Ginovart et al.	Sustainability Era Light distribution in tanks with the green seaweed Ulva ohnoi: Efect of stocking density, incident irradiance and chlorophyll content	2023
280	Palou et al.	Evaluation of the Near Infrared Spectroscopy (NIRS) to predict chemical composition in Ulva ohnoi	2023
281	Petit et al.	Green and red macroalgae extracts show antibacterial effects and induce 2 innate immune responses in Nile tilapia and rainbow trout in vitro	2023
282	Guerre et al.	Targeted sphingolipid analysis in chickens suggests different mechanisms of fumonisin toxicity in kidney, lung, and brain	2022
283	Hervet et al.	Marine-Sulfated Polysaccharides Extracts Exhibit Contrasted Time-Dependent Immunomodulatory and Antiviral Properties on Porcine Monocytes and Alveolar Macrophages	2022
284	Guerre et al.	Targeted Sphingolipid Analysis in Heart, Gizzard, and Breast Muscle in Chickens Reveals Possible New Target Organs of Fumonisins	2021
285	Bussy et al.	The sulphated polysaccharides extract ulvans from Ulva armoricana limits Marek's disease virus dissemination in vitro and promotes viral reactivation in lymphoid cells	2022
286	Lassallette et al.	Targeted sphingolipidomics indicates increased C22-C24:16 ratios of virtually all assayed classes in liver, kidney, and plasma of fumonisin-fed chickens	2023
287	Güroy et al.	Effects of dietary marine sulphated polysaccharides (Algimun®) on growth performance, immune responses and disease resistance of juvenile gilthead seabream (Sparus aurata)	2022
288	Stokvis et al.	to Photobacterium damselae subsp. piscicida Proteolytic enzyme-treated seaweed co-product (Ulva laetevirens) inclusion in cornsoybean and European broiler diets to improve digestibility, health, and performance	2022
289	Stokvis et al.	A proteolytic enzyme treatment to improve Ulva laetevirens and Solieria chordalis seaweed co-product digestibility, performance, and health in broilers	2022

290	Sanchez-García et al.	Benefit of the nutritional and mineral composition of sea lettuce from a traditional	2024
291	Dhiman et al.	salina: Implications for human consumption Stereoselective Total Synthesis of Stereoselective Total Synthesis of (-). Thallusin for Bioactivity Profiling	2022
292	Ghaderiardakani et al.	Metabolite profiling reveals insights into the species-dependent cold stress response of the green seaweed holobiont Ulva (Chlorophyta)	2022
293	Hardegen et al.	Lifecycle-dependent toxicity and removal of micropollutants in algal cultures of the green seaweed Ulva (Chlorophyta)	2023
294	Hmani et al.	High-temperature stress induces bacteria-specific adverse and reversible effects on Ulva (Chlorophyta) growth and its chemosphere in a reductionist model system	2024
295	Obolski et al.	Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides	2022
296	Steinhagen et al.	Phylogeny and ecology of the green seaweed Ulva	2024
297	Ulrich et al.	Thallusin Quantification in Marine Bacteria and Algae Cultures	2022
298	Wichard	From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture	2023
299	Wienecke et al.	Enantioselective Total Synthesis of the Morphogen (-) -Thallusin and Mediated Uptake of Fe(III) into the Green Seaweed Ulva	2024
300	Fricke et al.	Composite materials for innovative urban farming of alternative food sources (macroalgae and crickets)	2022
301	Fricke et al.	A proof of concept for inland production of the "sea-vegetable" Ulva compressa in Brandenburg (Central Europe) using regional saline groundwater	2023
302	Fricke et al.	Study on the nutritional composition of the sea vegetable Ulva compressa in a brine-based cultivation system	2023
303	Pasquini et al.	Chemosensitivity Of The Sea Urchin <i>Paracentrotus Lividus</i> : Implication On Feeding Behavior And Diets Formulation	2023a
304	Cardoso et al.	The effect of irradiance versus light dose on the antioxidant activity of two strains of Ulva lacinulata	2024
305	Pasquini et al.	Effects of different culture media on growth, composition and quality of Ulva sp. cultivated in cylindrical photobioreactors	2023b
306	Cardoso et al.	Salinity as a tool for strain selection in recirculating land-based production of Ulva spp. from germlings to adults	2023
307	Öder et al.	Optimisation of extraction conditions for obtaining active compounds of Ulva sp.	2024
308	Meißner	Optimising Antioxidant Activity in Blade-Forming Ulva spp. in Land-Based Cultivation	2022
309	Addis et al.	COST Action 20106: Tomorrow's 'Wheat of the Sea': Ulva, a model for an innovative mariculture (SEAWHEAT)	2022
310	Addis et al.	Ulva as potential stimulant and attractant for a valuable sea urchin species: a chemosensory study	2023
311	Hofmann et al.	The green seaweed Ulva: tomorrow's "wheat of the sea" in foods, feeds, nutrition, and biomaterials	2024
312	Pratap et al.	The Algal Polysaccharide Ulvan and Carotenoid Astaxanthin Both Positively Modulate Gut Microbiota in Mice	2022
313	Lawton et al.	Selection of temperate Ulva species and cultivars for land-based cultivation and biomass applications	2021
314	Marques et al.	Lipidomic Characterisation and Antioxidant Activity of Macro and Microalgae Blend	2023
315	Pasquini et al.	Effects of different culture media on growth, composition, quality and palatability of the green algae Ulva sp. cultivated in cylindrical photobioreactors	2024
316	Mata et al.	The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts	2015
317	Magnusson et al.	Seaweed salt from Ulva: A novel firststepinacascading biorefinery model	2016
318	Magnusson et al.	Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi	2019
319	Kidgell et al.	Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva	2021
320	Glasson et al.	A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi	2017
321	Kidgell et al.	Ulvan: A systematic review of extraction, composition and function	2019
322	Glasson et al.	Multiple response optimisation of the aqueous extraction of high quality ulvan from <i>Ulva ohnoi</i>	2019
323	Kidgell et al.	The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage	2020
324	Kidgell et al.	Ulvans are not equal - Linkage and substitution patterns in ulvan polysaccharides differ with Ulva morphology	2024
325	Glasson et al.	Structural characterisation of ulvans extracted from blade (Ulva ohnoi) and filamentous (Ulva tepida and Ulva prolifera) species of cultivated Ulva	2021

326	Sawicki	Influence of salinity in grow and photosynthetic activity in different Ulva germlings and optimisation of selective breeding	2022
327	Mueller	Life Cycle Assessment of land-based Seaweed Cultivation for Packaging Material	2024
328	Cardoso	Strain selection and optimisation of Ulva spp. for land-based recirculating cultivation systems	2024
329	Addis et al.	Ulva as potential stimulant and attractant for a valuable sea urchin species: a chemosensory study	2023a
330	Addis et al.	Ulva and its components as potential stimulants in aquaculture feeds: chemosensory response of a valuable sea urchin species	2023b
331	Adler et al.	Exploring the Cultivation of Ulva intestinalis in Low-Salinity Environments of the Baltic Sea	2025
332	Andersson et al.	Co-farming rainbow trout (Oncorhynchus mykiss) and sea lettuce (Ulva fenestrata) increased macroalgae protein content and positively affected fish welfare	2025
333	Blomme et al.	Phylogeny and ecology of the green seaweed Ulva. Part II	2025
334	Buck and Shpigel	ULVA: Tomorrow's "Wheat of the sea", a model for an innovative mariculture	2023
335	Dalay	Solution to Global Warming By Increasing the Algae Based Products in Biotechnology	2024
336	Denisova et al.	Sea vegetables for brine-based inland cultivation	2025
337	Ghaderiardakani et al.	Algal Growth and Morphogenesis-Promoting Factors Released by Cold-Adapted Bacteria Contribute to the Resilience and Morphogenesis of the Seaweed Ulva (Chlorophyta) in Antarctica (Potter Cove)	2024
338	Gnayem et al.	Seasonal and culture period variations in the lipid and fatty acid content of Ulva lactuca cultivated in Mikhmoret onshore (Israel)	2024
339	Hardegen et al.	Lifecycle-dependent toxicity and removal of micropollutants in algal cultures of the green seaweed Ulva (Chlorophyta)	2023
340	Hardegen et al.	Biodegradation of Xenoestrogens by the Green Tide Forming Seaweed Ulva: A Model System for Bioremediation	2025
341	Hmani et al.	High-temperature stress induces bacteria-specific adverse and reversible effects on Ulva (Chlorophyta) growth and its chemosphere in a reductionist model system	2024
342	Hofmann et al.	A European biobanking strategy for safeguarding macroalgal genetic material to ensure food security, biosecurity and conservation of biodiversity	2025
343	Holbl et al.	Bacteria-released algal growth and morphogenesis factors regenerate axenic calli derived from the macroalga Ulva (Chlorophyta) and change the fatty acid profile	2025
344	Jelić Mrčeli et al.	A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea	2024
345	Larsen-Ledet et al.	Strain selection and temperature responses of Ulva and Ulvaria (Chlorophyta) for application in land-based cultivation systems	2025
346	McKenna et al.	Seaweed-associated microbes as a novel source of crop agrochemicals	2025
347	Obolski et al.	Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides	2022
348	Palou et al.	Evaluation of the Near Infrared Spectroscopy (NIRS) to predict chemical composition in Ulva ohnoi	2023
349	Pintado et al.	Manipulating the Ulva holobiont: Co-culturing Ulva ohnoi with Phaeobacter bacteria as a strategy for disease control in fish-macroalgae IMTA-RAS aquaculture	2023
350	Qui-Minet et al.	Light-regulated interactions between Phaeobacter sp. and Ulva ohnoi (Chlorophyta): Effects on microbiome dynamics, metabolome composition, and tropodithietic acid production	2025
351	Robles-Carnero et al.	Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions	2024
352	Saha et al.	Progress and future directions for seaweed holobiont research	2024
353	Schmidt et al.	Spatial in situ mapping of cellulose and other biopolymers reveals the 3D tissue architecture in the green algae Ulva fenestrata	2025
354	Schultz et al.	Raman Spectral Analysis in the CHx-Stretching Region as a Guiding Beacon for Non- Targeted, Disruption-Free Monitoring of Germination and Biofilm Formation in the Green Seaweed Ulva	2024
355	Steinhagen et al.	Unlocking economic potential of the Ulva crop for low salinity environments: exploring the effect of salinity gradients on the performance and valuable compounds of Baltic Sea strains	2025a
356	Steinhagen et al.	Green gold rush in the Baltic Sea: Investigating sea lettuce's performance by distribution mapping of valuable compounds in a fluctuating environment	2025b
357	Vargas-Murga et al.	Metal(oid)s in Ulva – should we be worried?	2025
358	Israel and Shpigel	Photosynthetic CO ₂ uptake by Ulva (Chlorophyta) as a potential contribution to global warming containment	2023
359	Roleda et al.	Chemical profiling of the Arctic sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications	2021

360	Mildenberger &	Green (Ulva fenestrata) and Brown (Saccharina latissima) Macroalgae Similarly Modulate	2024
	Rebours	Inflammatory Signaling by Activating NF-kB and Dampening IRF in Human Macrophage-	
		Like Cells	
361	Cardoso et al.	The effect of irradiance versus light dose on the antioxidant activity of two strains of	2025
		Ulva lacinulata	
362	Larsen-Ledet et al.	Strain selection and temperature responses of Ulva and Ulvaria (Chlorophyta) for	2025
		application in land-based cultivation systems	
363	Marincola et al.	Metabolic Profile of Senegalese Sole (Solea senegalensis) Muscle: Effect of Fish-	2025
		Macroalgae IMTA-RAS Aquaculture	